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Importance: Precisely decoding brain dysfunction from high-dimensional functional recordings is
crucial for advancing our understanding of brain dysfunction in brain disorders. Self-supervised learning
(SSL) models offer a transformative approach for mapping dependencies in functional neuroimaging
data. Leveraging the intrinsic organization of brain signals for comprehensive feature extraction, these
models enable the analysis of critical neurofunctional features within a clinically relevant framework,
overcoming challenges related to data heterogeneity and the scarcity of labeled data. Highlight: This
paper provides a comprehensive overview of SSL techniques applied to functional neuroimaging data,
such as functional magnetic resonance imaging and electroencephalography, with a specific focus on
their applications in various neuropsychiatric disorders. We discuss 3 main categories of SSL methods:
contrastive learning, generative learning, and generative-contrastive methods, outlining their basic
principles and representative methods. Critically, we highlight the potential of SSL in addressing data
scarcity, multimodal integration, and dynamic network modeling for disease detection and prediction. We
showcase successful applications of these techniques in understanding and classifying conditions such
as Alzheimer’s disease, Parkinson’s disease, and epilepsy, demonstrating their potential in downstream
neuropsychological applications. Conclusion: SSL models provide a scalable and effective methodology
for individual detection and prediction in brain disorders. Despite current limitations in interpretability
and data heterogeneity, the potential of SSL for future clinical applications, particularly in the areas of
transdiagnostic psychosis subtyping and decoding task-based brain functional recordings, is substantial.
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Introduction

Elucidating the spatiotemporal dynamics of brain functional
reorganization in network neuroscience has advanced transla-
tional medical applications in brain disorders. This includes
uncovering pathophysiological processes, enabling early iden-
tification, and facilitating therapeutic interventions for these
conditions. Nevertheless, precisely decoding brain dysfunction
from individual high-dimensional functional recordings, par-
ticularly those obtained through functional magnetic reso-
nance imaging (fMRI) and electroencephalography (EEG), still
presents a considerable challenge. This is due to the inherent
complexity of spatiotemporal functional activities within the
brain’s multi-scale network architecture. Despite recent techni-
cal advancements in applying deep learning to decode brain
dysfunction in brain disorders, the generalizability of these
models is often limited. This limitation mainly stems from their
reliance on supervised learning paradigms, which require
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sample-level annotations that assign specific brain disorders
or behavioral phenotypes to individual data points [1]. Data
heterogeneity, labeling discrepancies, and brain disorder diver-
sity across imaging sites hinder the development of accurate,
context-wide neuroimage decoding models [2,3].
Self-supervised learning (SSL) has emerged as a promising
tool for functional neuroimaging decoding due to its ability to
leverage vast amounts of unlabeled data [4]. Annotating brain
data is often time-consuming, costly, and further complicated
by the inherent temporal variability of neurological conditions.
In contrast to conventional supervised learning approaches that
are heavily dependent on large annotated datasets, SSL employs
pretext tasks like contrastive learning and generative reconstruc-
tion to learn directly from unlabeled data. This is particularly
important in neuroscience, where the scarcity of labeled data
presents a marked challenge [5]. By extracting intrinsic char-
acteristics from high-dimensional neural signals, the SSL
model captures the spatiotemporal patterns of brain phenotypes,
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allowing transferability to external datasets and new tasks.
This attribute positions SSL as a transformative paradigm
within the realm of functional neuroimaging research, offer-
ing a more scalable and effective tool to support clinical
applications. Recent developments in SSL models, trained
on diverse neuroimage datasets [5-8], encompassing genera-
tive learning, contrastive learning, and generative-contrastive
frameworks [9], have shown remarkable potential in down-
stream neuropsychological applications, including disease
detection and outcome prediction [10-13]. While some lit-
erature reviews have discussed the technical merits and chal-
lenges of SSL [9,14,15], a thorough overview of SSL-based
medical applications in neuropsychological diseases remains
to be established.

This paper provides a thorough examination of the applica-
tion of SSL techniques for decoding brain dysfunction in the
context of brain disorders. It begins with an overview of the
foundational SSL methodologies and their significance in brain
network computation. Key medical applications of SSL in
addressing challenges such as data scarcity, multimodal integra-
tion, and dynamic network modeling in brain disorders are
then discussed. The paper concludes by highlighting the cur-
rent limitations in SSL adoption for brain network analysis and
proposing potential directions for future research to overcome
these challenges.

SSL Models

Brain disease detection based on neuroimaging has been a chal-
lenge, attributed to the intricate reorganization of the brain
network and the diverse neuropathological manifestations [16].
By processing high-dimensional functional neuroimaging data,
SSL models hold great promise for learning representations of
complex neural activity, thereby facilitating downstream tasks.
A general pipeline of SSL in neuropathological applications is
illustrated in Fig. 1. SSL models have recently demonstrated
significant potential in the field of neuroimaging analysis. The
core idea of SSL is to leverage vast amounts of unlabeled data
for pretraining, learning general data representations to over-
come the challenge of data annotation scarcity. The pretext task
is a crucial component within SSL models. The pretext task, also
known as an auxiliary task or pretraining task, is a core com-
ponent of SSL. It is designed to create an artificial, easily solvable
supervised learning task that uses unlabeled data to train a
model, enabling it to learn general representations relevant to
the data’s intrinsic characteristics. This learned representation
then provides a foundation for downstream real-world tasks.
In the field of neuroimaging, data annotation is costly, while
unlabeled data are abundant. The introduction of pretext tasks
allows us to fully utilize this unlabeled neuroimaging data to
pretrain models and learn general representations of brain net-
works or brain activity patterns. These representations can
be effectively transferred to various downstream tasks, such
as brain disease classification and disease severity regression,
improving model performance on these tasks and enhancing
model generalizability across different datasets. In the field of
neuroimaging, the design of pretext tasks also needs to fully
consider the characteristics of neuroimaging data, such as high
dimensionality, spatiotemporal dependency, and graph struc-
ture. In the following sections, we will introduce several typical
SSL techniques, including contrastive learning, generative learn-
ing, and generative-contrastive learning, as shown in Fig. 2.
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Contrastive learning

Contrastive learning aims to enhance the similarity of positive
pairs of samples while reducing the similarity of negative pairs
[17]. By embedding high-dimensional data into latent spaces
and aggregating similarities and alienating dissimilarities, con-
trastive learning models can effectively capture complex brain
activity patterns through latent spatial representations, render-
ing them suitable for brain disorder detection. In the context
of neuroimaging data, one can define positive pairs as patient
data from the same brain region or contiguous time domains,
and negative pairs as data from different brain regions or non-
contiguous time domains [18]. Currently, contrastive learning
has been widely used in processing human brain signals,
including EEG and fMRI scans [19-21].

Graph-based contrastive learning

Brain network data can be intuitively represented as graphs,
where nodes correspond to brain regions or electrode positions,
and edges capture functional or structural connectivity [22].
This graph-based representation allows for the modeling of com-
plex brain networks and facilitates the application of advanced
methods such as graph-based contrastive learning (GBCL)
[23], which has shown promise in uncovering meaningful rep-
resentations from brain data. Graph-based neural networks
(GNNG), as a powerful deep learning framework for processing
graph-structured data, have demonstrated remarkable capa-
bilities in modeling non-Euclidean data structures such as
graphs. However, the inherent challenges of data labeling in
these spaces necessitate the development of innovative solu-
tions. Recent advancements in GBCL combine the represen-
tational power of GNNs with the efficiency of SSL to extract
meaningful features from brain connectivity maps [24]. Within
the framework of GNNs, various advanced models have been
designed to tackle specific challenges in brain network analysis,
including effective feature representation, noise reduction, and
dynamic brain state modeling. While graph convolutional net-
works (GCNG) are primarily used for supervised learning tasks,
their core ability to capture local and global features in graphs
has inspired extensions into self-supervised frameworks, such
as contrastive learning or graph autoencoders, which are better
suited for tasks involving large-scale unlabeled brain data. For
example, the contrastive FC graph learning (CGL) framework
[25] enhances connectivity pattern representations using spec-
tral convolution to model complex interactions across brain
regions. In CGL, the pretext task involves contrastive learning
on functional connectivity (FC) graphs, where the model
defines positive pairs as FC graphs derived from nonoverlap-
ping region of interest (ROI) time series of the same subject
and negative pairs as FC graphs from different subjects. This
task encourages the model to learn representations that capture
subject-specific connectivity patterns by maximizing the simi-
larity between positive pairs and minimizing it between nega-
tive pairs, using a contrastive loss function optimized over
spectral graph convolutions. Additionally, a dynamic popula-
tion map is introduced, adapting network characteristics over
time based on patient similarity, thereby improving the cluster-
ing of similar cases. GATE (graph CCA for temporal SSL) [26]
reinterprets contrastive learning for fMRI analysis by leveraging
canonical correlation analysis (CCA) as a novel alignment
mechanism. Through dynamic FC-based augmentations—step
window augmentation (S-A) and multi-scale window augmen-
tation (M-A)—GATE generates diverse yet correlated views of
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Fig. 1. Overview of the typical SSL pipeline for neuroimaging data analysis. The top represents the brain network pipeline, where raw neurological data are systematically processed
to extract meaningful representations. The bottom highlights the core self-supervised model, comprising an encoder—decoder architecture. These refined representations
are then utilized for downstream tasks, such as disease categorization, detection, and prediction. The model’s bidirectional learning flow ensures robustness and adaptability

across diverse neuroimaging datasets.

blood oxygen level-dependent (BOLD) signals, serving as posi-
tive pairs in the contrastive framework. The pretext task in
GATE involves generating these augmented views of BOLD
signals as positive pairs, contrasting them against views from
different subjects or uncorrelated segments (negative pairs).
The CCA-based loss maximizes the similarity between these
embeddings while regularizing feature decorrelation to prevent
collapse. Similarly, CMV-CGCN [27] integrates FC and higher-
order functional connectivity (HOFC) features within a con-
trastive multi-view learning framework. By defining positive
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pairs (FC and HOFC of the same subject) and negative pairs
(FC or HOFC from different subjects), the model employs a
contrastive loss to maximize similarity between positive pairs
while minimizing similarity between negative pairs. In addition
to incorporating graph convolutional neural networks, MeTSK
[28] employs a novel meta-learning strategy that integrates SSL
with a contrastive learning framework on graphs, facilitating
effective knowledge transfer across domains. In the source
domain, a graph contrastive loss is used to align embeddings
from different temporal views of the same subject (positive pairs)
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Fig. 2. The primary learning strategies within SSL models in neuroimage-based medical applications. In contrastive learning, the graph-based approach generates augmented
views of brain graphs to maximize view similarity through encoders and decoders, while the spatiotemporal-based approach focuses on leveraging temporal neural signals for
similar contrastive objectives. Generative learning includes a mask-based method, which reconstructs randomly masked brain regions to minimize reconstruction loss, and a
VAE-based method, where neural imaging data are encoded and reconstructed to learn global patterns. Last, generative-contrastive learning combines generative modeling,

such as GANs, with contrastive learning to capture intrinsic brain representations.

while distinguishing them from embeddings of different sub-
jects (negative pairs). Concurrently, the target-specific task is
optimized using a bilevel meta-learning framework, where the
inner loop adapts to the target task, while the outer loop updates
transferable graph representations. The fusion of advanced feature
extraction and contrastive learning techniques enhances the flex-
ibility and general applicability of models in brain network analy-
sis, significantly benefiting neuroimaging data processing. For
instance, to address the issue of noise, diffusion learning has
been incorporated in some models. DGCL [29] introduces the
brain region-aware module to dynamically adjust population
maps through diffusion processes, reducing noise and eliminat-
ing disease-related connections to enhance brain network con-
struction. Similarly, BrainNet [30] incorporates hierarchical
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graph diffusion learning to simulate the spread of epileptic
waves from stereoelectroencephalography (SEEG) data. Through
the use of bidirectional contrastive predictive coding (BCPC), it
aligns temporal embeddings by contrasting related and unre-
lated segments, ensuring that the learned representations cap-
ture essential dynamics. In BrainNet, the pretext task involves
contrasting related temporal segments (positive pairs) against
unrelated segments (negative pairs) within SEEG data, enabling
the model to learn representations that reflect the temporal
dynamics of epileptic wave propagation, which are critical for
understanding and predicting seizure patterns.

In summary, graph-based SSL leverages the structural char-
acteristics of graph data to efficiently extract both local and
global features from brain networks without requiring labeled
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data, providing robust support for complex brain network rep-
resentation. The incorporation of graph-specific properties
enhances model adaptability and robustness, ensuring consis-
tency in feature representation by reducing noise and eliminat-
ing irrelevant connections. Techniques such as contrastive
learning optimize the representation of nodes and edges, result-
ing in improved accuracy and generalization in detection and
prediction tasks. These advantages establish graph-based SSL
as a critical approach for analyzing graph-structured data in
neuropsychological disease research.

Spatiotemporal-based contrastive learning

Effectively capturing spatial and temporal dependencies is crucial
for the integration of multichannel neurophysiological time-series
data regarding complex functional activity of the brain [31,32].
A dual-perspective approach that integrates spatial and temporal
patterns allows the SSL model to identify dynamic changes in
brain networks, thereby enhancing its discriminative or predictive
capacity for brain diseases [33,34]. While traditional methods in
neurosignal analysis often rely on static representations or sim-
plistic aggregation of temporal features, they fail to capture the
intricate spatiotemporal dynamics and evolving patterns within
brain networks. Advanced models [35-37] have shifted toward
leveraging time-series data, enabling the analysis of dynamic
connectivity changes and long-range dependencies. To further
enhance this capability, spatiotemporal-based contrastive learning
frameworks have emerged, offering a more robust approach to
disentangle temporal variations and spatial relationships, thereby
addressing the constraints imposed by static and linear methods.
For example, spatiotemporal hierarchical enhancement-based
contrastive learning (ST-HACL) [38] constitutes an advanced
framework designed to improve spatiotemporal neurosignal
analysis, combining contrastive learning principles with a GNN
architecture. The InfoNCE objective function serves as the foun-
dation, enabling SSL through the optimization of feature repre-
sentations based on contrastive samples. The model distinguishes
positive and negative sample pairs, which are critical to enhancing
its ability to capture dynamic temporal relationships. Positive
samples are created through augmentations of the same brain
network, such as temporal window cropping or signal compres-
sion. In contrast, negative samples originate from augmented
brain networks of different subjects. Hierarchical augmentation
strategies tailored to brain network construction ensure the gen-
eration of high-quality contrastive samples, which strengthens
the model’s ability to learn intricate spatiotemporal dependencies
within dynamic brain signals. By introducing these complex pre-
text tasks, ST-HACL models achieve superior performance in
learning long-range temporal dependencies and spatial interac-
tions across different brain regions. Traditional approaches,
including recurrent neural networks (RNNs) and spatiotemporal
deep infomax (ST-DIM) [39], provide foundational insights that
ST-HACL extends to achieve superior robustness and accuracy
in predicting neurological disease progression. However, the pre-
text tasks in ST-HACL, through their ability to generate augmented
views of the brain network and encourage the model to learn tem-
poral and spatial relationships, elevate the model’s performance
significantly beyond what is achievable by traditional methods.

Generative learning

Generative learning addresses the challenge of annotation scar-
city in neurophysiological signal decoding by synthesizing
features that closely resemble those found in real data, through
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the process of learning the underlying distribution of these
samples [40]. In this study, we mainly focus on 2 primary gen-
erative learning models applied in neuroimaging data, specifi-
cally variational autoencoders (VAEs) and mask-based learning
(MAE). VAEs excel in latent representation and facilitate tasks
like anomaly detection in brain imaging through efficient recon-
structions [41]. In contrast, MAE complements generative goals
by reconstructing missing or corrupted data, ensuring data
integrity [42]. These approaches are particularly valuable in
neuroimaging, where labeled data are often limited, and genera-
tive models can mitigate this by producing synthetic samples
that enhance downstream tasks such as disease classification.
However, their reliance on reconstruction objectives may pri-
oritize low-level details over high-level features critical for clas-
sification, a limitation noted in generative SSL [9].

VAE-based generative learning

By leveraging probabilistic modeling of brain network struc-
tures, VAEs are capable of extracting disentangled latent repre-
sentations of neural information. For instance, the deep causality
variational autoencoder (CVAE) [43] model extends the tradi-
tional VAE framework by introducing a causal layer, enabling
the direct inference of causal relationships between brain regions
from time-series MRI data. This approach bypasses the restric-
tive constraints of conventional methods, such as acyclic graph
structures, while simultaneously reconstructing brain network
structures and capturing spatiotemporal dynamics. Similarly,
the deep variational autoencoder (DVAE) [44] model employs
variational inference to uncover underlying structures within
high-dimensional MRI data, generating interpretable represen-
tations of brain activity and enables the extraction of generalized
features, enhancing the robustness and generalizability of brain
network analysis. DynaMorph [45] advances the analysis of
dynamic brain morphology through a vector quantization varia-
tional autoencoder (VQ-VAE) framework. By integrating tem-
poral regularization, DynaMorph ensures smooth transitions
across various brain states, facilitating the examination of brain
dynamics in diverse contexts. This simultaneous learning of
latent characterizations enables the model to delineate and ana-
lyze complex spatiotemporal changes in cellular brain networks,
promoting a deeper understanding of time-evolving brain struc-
tures. Beyond standalone VAE-based frameworks, hemispher-
ically separated cross-connected group aggregate learning
(HCAL) [46] combines the strengths of VAEs and generative
adversarial networks (GANs) in a VAE-GAN hybrid architec-
ture. HCAL, tailored for neurodegenerative disease analysis,
synthesizes diverse and realistic structural connectivity matrices
by emphasizing both intra- and interhemispheric connections.
Its hemispherical dissociation generator adeptly captures local
and global topological features, and a connection-aware dis-
criminator stabilizes adversarial training, thereby enriching the
structural connectivity data essential for brain network analysis.
In summary, VAE-based models have demonstrated exceptional
efficacy in brain network analysis, particularly in capturing com-
plex spatiotemporal dynamics within brain regions. Through
innovative frameworks and hybrid architectures, these models
provide robust tools for addressing challenges such as data scar-
city, overfitting, and the inherent variability of brain networks.
Their strength lies in modeling complete data distributions,
making them ideal for tasks requiring reconstruction, such as
anomaly detection in brain imaging. However, for disease clas-
sification tasks like identifying neurodegenerative patterns, their
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focus on reconstruction may capture extraneous details irrele-
vant to discriminative features, potentially reducing perfor-
mance compared to contrastive methods. Additionally, their
computational complexity can hinder scalability when applied
to large-scale neuroimaging datasets.

Mask-based generative learning

Mask-based models tackle the challenges posed by the complex-
ity of brain connectivity and noise uncertainty in traditional
brain network analysis, which often result in incomplete repre-
sentations. By strategically masking regions or connections dur-
ing training, these models are better equipped to learn deeper
and more meaningful representations of brain networks. For
instance, the BrainMAE [47] model utilizes a mask autoencod-
ing framework specifically designed for fMRI data, where the
key innovation lies in the region-aware graph attention mecha-
nism, which focuses on the interactions between brain regions
while reconstructing masked areas, and enhances the model’s
ability to process noisy fMRI data, leading to the extraction of
robust and interpretable brain signal representations. Similarly,
EAG-RS [48] employs a random seed-based network masking
approach, masking ROI to force the model to learn nonlinear
relationships between functional connections. By prioritizing
higher-order functional connections and incorporating hierar-
chical correlation propagation (LRP), this method ensures that
the reconstructed connections are indispensable for accurately
recovering the masked functional connections. Overall, the
fusion of masking strategies and advanced graph-based tech-
niques underscores the importance of mask-based models as a
robust tool for tackling challenges in brain network analysis.
Models excel in denoising and enhancing data integrity, which
is crucial for handling noisy neuroimaging data and can support
disease classification by reconstructing disease-relevant con-
nectivity patterns, such as those altered in disorders like epi-
lepsy. Nevertheless, their effectiveness heavily depends on the
masking strategy; poorly designed masks may fail to emphasize
critical features, leading to suboptimal representations for
downstream tasks. Moreover, unlike contrastive methods that
directly optimize class separation, mask-based approaches may
struggle to prioritize discriminative features, potentially limiting
their utility in fine-grained classification tasks.

Generative-contrastive learning

Generative-contrastive SSL leverages the advantages of gen-
erative models and contrastive learning for robust representa-
tion learning. It typically includes 2 principal components: a
generator and a discriminator. The generator produces syn-
thetic data that approximate the true data distribution, while the
discriminator learns to distinguish between real and generated
samples. Here, we will introduce advantages of some generative-
contrastive SSL models applied in neuroimaging data.

GAN-based generative-contrastive learning

Among generative-contrastive methods, GAN stands out as
the most notable model [49]. By generating and contrasting
synthetic brain networks or functional activities, this architec-
ture tackles key challenges in brain network analysis, including
the scarcity of large labeled datasets and the variability inherent
in brain connectivity. This approach can particularly optimize
the use of small-sample datasets, bolstering model robustness
and generalizability. Furthermore, GANs support tasks such as
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cross-modal synthesis and data completion, which can expedite
training processes and enhance the accuracy of predictions in
neurological disease diagnosis. For instance, in the context of
disease classification, such as distinguishing Alzheimer’s dis-
ease (AD) from healthy controls, GANs can generate synthetic
brain connectivity patterns to augment limited labeled data,
thereby improving the model’s ability to identify subtle disease-
specific features that might otherwise be obscured by data scar-
city [9]. However, their effectiveness depends on the stability
of training, as GANSs are prone to collapse without careful tun-
ing. For instance, graph-based conditional generative adver-
sarial networks (GC-GANs) [50] adopt a conditional GAN
framework that incorporates additional information, such as
node or graph labels, to guide the generation process, which
ensures that the synthetic graph structures remain consistent
with their real counterparts. Furthermore, a class-aware dis-
criminator enhances the diversity and quality of generated
outputs, mitigating the issue of data scarcity while preserving
the global and local topological characteristics of brain net-
works. In GraphGAN++ [51], the graph generator employs
Wasserstein generative adversarial networks (WGANS) [52] to
stabilize the training process and prevent mode collapse.
Additionally, a 3-stage learning framework, combined with a
topological loss function, reduces uncorrelated multi-graph
clustering and noise-related issues in brain network generation.
By integrating GCNs with a-GAN, the a-GCNGAN [53] frame-
work uses graph variational autoencoders (GVAEs) [54] to
model the intrinsic structure of brain networks. The encoding
discriminator further ensures that the posterior distribution of
the latent space aligns with the prior, achieving more accurate
graph generation. This precision in modeling brain network
topology can be particularly beneficial for disease classification
tasks, where capturing fine-grained connectivity differences—
such as those between healthy and diseased states—is critical.
Yet, the computational complexity and potential for overfitting
to generated samples may limit its scalability across diverse
neuroimaging datasets [9].

Other generative-contrastive learning

BrainMass [55], a novel generative-contrastive learning model,
captures individual brain activity patterns across over 30 datasets,
demonstrating strong generalizability in identifying various
brain disorders. It integrates the masked region module (MRM)
and latent representation alignment (LRA) module to enable
simultaneous generative-contrastive learning. The MRM in
BrainMass randomly masks brain regions and uses the remaining
features to reconstruct the masked areas, thereby strengthening
inter-regional connections and maintaining local network prop-
erties. Meanwhile, the LRA module regularizes augmented brain
networks from the same subjects, ensuring similarity in latent
embeddings despite pseudo-FC enhancements. This dual-module
design balances generative learning through feature reconstruc-
tion with contrastive alignment of network representations,
facilitating the accurate extraction of disease-specific biomarkers.
Empirical evidence indicates that the dual-module architecture
excels in terms of generalizability and adaptability, in the context
of disease discrimination across various conditions. Compared
to purely contrastive methods like SImCLR [17], BrainMass’s
generative component enhances its ability to model complex
brain activity patterns, making it particularly suitable for diseases
with heterogeneous manifestations, such as schizophrenia or
epilepsy. However, its reliance on reconstructing masked regions
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may introduce biases if the masking strategy does not adequately
reflect disease-relevant variability, a limitation noted in genera-
tive methods by Liu et al. [9]

Contrasting BrainMass’s focus on single-modal masking
and attention, SSL models encompassing decomposed-VAE
module specialize in multimodal fusion and decomposition,
enhancing the understanding of brain network’s structural-
functional interplay. For instance, a novel SSL model, named
brain structure-function fusion-representation learning (BSFL),
is introduced to efficiently derive integrated representations
from structural and functional MRI data for the detection of
mild cognitive impairment (MCI). Specifically, the generative
module, implemented through variational graph autoencoders,
decomposes the feature space of multimodal MRI data into
shared and modality-specific representations. These representa-
tions are reconstructed to retain unimodal information, while
the fusion of decomposed features generates unified brain net-
works, thereby ensuring structural-functional complementarity.
Besides, the contrastive learning module utilizes a uniform-
unique contrastive loss function to maximize the separation
between unique representations within each modality while
minimizing the distance between shared representations across
modalities. This synergistic design enhances the accuracy of
feature decomposition and effectively captures complementary,
disease-specific connectivity patterns, leading to a significant
improvement in the prediction of brain abnormalities associ-
ated with MCL

Medical Applications of SSL

SSL models demonstrate a remarkable advantage by harnessing
extensive unlabeled datasets to learn the intrinsic network reor-
ganization signatures associated with brain disorders, thus pav-
ing the way for innovative tools in disease screening, diagnostic
detection, and prognostic forecasting. To comprehensively
review the applications of SSL in brain functional impairments
of brain disorders, we conducted a systematic literature search
and screening. The databases searched include PubMed, Web
of Science, and Scopus, covering the period from 2019 to 2024.
The search keywords used were self-supervised learning, con-
trastive learning, generative learning, brain, fMRI, EEG, and
brain disorders. The review was limited to literature in the
English language. The titles and abstracts of all retrieved articles
were examined. For those works that appeared to be potentially
relevant, the full texts were accessed and retrieved. Duplicate
publications were excluded. Following a rigorous literature
screening spanning the past 5 years, a selection of 26 related
literatures has been identified and listed in Tables 1 to 3. We
will summarize these medical applications as below.

Neurodegenerative disorders

As research into AD deepens, understanding how func-
tional brain networks deteriorate with disease progression has
become increasingly critical. Traditional static modeling [56,57]
approaches often fall short in fully capturing these dynamic
changes, as they provide only a snapshot of network states rather
than their evolution over time. In contrast, advanced dynamic
modeling techniques offer a novel perspective by tracking the
temporal progression of network alterations, shedding light on
the underlying mechanisms of neurodegeneration. Building on
this, the dynamic modeling strategy of DynaMorph [45] effec-
tively captures the progressive deterioration of functional brain
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networks in AD patients. Specifically, it identifies distinct tem-
poral patterns of network disruption, including the sequential
weakening of long-range connectivity and the emergence of
localized network instability. These findings provide deeper
insights into how the pathological features of AD evolve over
time, potentially illuminating critical windows for therapeutic
intervention. Similarly, DGCL [29] applies a graph-based self-
supervised contrastive learning framework to identify 17 critical
ROIs associated with AD, including the frontal lobe, precuneus,
paracentral lobule, superior frontal gyrus, and caudate nucleus.
This framework leverages node-level representations by maxi-
mizing agreement between augmented views of the same brain
region while minimizing similarity across different regions. The
reconstructed brain networks highlight pathological disrup-
tions in AD, such as weakened long-range FC (e.g., between the
frontal lobe and precuneus) and increased segregation within
local subnetworks, reflecting impaired global integration and
abnormal local clustering. The masking learning mechanism of
ST-MAE [58] leverages a spatiotemporal masked autoencoding
approach to dynamically reconstruct FC networks. In the con-
text of Parkinson’s disease (PD), ST-MAE effectively identifies
disrupted connections between the basal ganglia and cortex, as
well as abnormalities in cortico-striatal and cortico-thalamic
pathways, which facilitates the identification of specific biomark-
ers, such as weakened interregional connectivity strength and
altered clustering coeflicients, which are indicative of disease
progression and severity. Single-photon emission computed
tomography (SPECT) imaging parameters, including striatum
asymmetry, putamen-to-caudate ratios, and regional uptake val-
ues, were combined with clinical variables such as age, biomarkers,
and symptom profiles to construct multimodal graph representa-
tions. Through the application of co-attention mechanisms,
alignment between imaging-derived and clinically derived
feature spaces was achieved, enabling the extraction of shared
embeddings. As a result, the multimodal contrastive cross-view
graph learning framework [59] approach facilitated the delinea-
tion of distinct clusters specific to PD patients. Insights gained
from these embeddings have revealed not only the heterogeneity
in patient-specific pathological variations but also the dopami-
nergic dysfunction underlying disease progression, providing
a foundation for tailored therapeutic strategies in the future.

Mental disorders

The CMV-CGCN framework [27] has identified distinct and
quantifiable patterns of abnormal FC in the brains of individuals
with autism spectrum disorder (ASD), which includes disrupted
correlations between specific brain regions and higher-order
interactions that contribute to the unique FC profiles associated
with ASD. Moreover, the synergistic integration of FC and HOFC
highlights the hierarchical organization and intricate interactions
within the brain networks of ASD patients. GraphGAN++ [51]
effectively identifies biologically meaningful functional subnet-
works and detects subtle abnormalities in the brain networks of
ASD patients. Through multi-graph clustering based on resting-
state brain FC, this model reveals ASD-specific network reorga-
nization, including disrupted inter-regional connectivity and
weakened local network integration. The identified subnetworks
are consistent with previous neuroimaging studies [60-62], rein-
forcing the validity of ASD-specific biomarkers. Notably, some
specific aberrant functional connections are directly associated
with core ASD symptoms, including deficits in social interaction
and repetitive behaviors. GCN_SSL [63] effectively monitors
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long-term dynamic shifts in brain functional networks during
ASD symptom progression, pinpointing time-dependent con-
nectivity changes in brain areas linked to social behavior, such
as fluctuations in the FC of the amygdala, hippocampus, and
fusiform gyrus. These changes are crucial for understanding
social cognition and emotion regulation in the developmental
trajectory of ASD, providing insights into the underlying neural
mechanisms and potential biomarkers. To tackle the heterogeneity
of attention-deficit/hyperactivity disorder (ADHD), BrainMass
[55] has successfully pinpointed crucial biomarkers linked to
temporal fluctuations in ADHD-related brain network connec-
tivity. This research underscores the significance of subnetworks
like the default mode and control networks, which exhibit altered
interactions in individuals with ADHD. Besides, the DVAE [44]
facilitates the creation of functional brain networks from resting-
state fMRI data, enabling the identification of potential ADHD
biomarkers. These biomarkers, manifested in unique FC pat-
terns, serve as a foundation for differentiating individuals with
ADHD from healthy controls and offer a deeper understanding
of the disorder’s neurobiological underpinnings. In summary,
SSL models encode complex neuroimaging data into a latent
space, enabling the extraction and analysis of key neurofunc-
tional features within a clinically relevant context. This approach
has revealed distinctive biomarkers linked to attention deficits
and impulsivity, which aids in the more accurate detection of
ADHD subtypes and supports early diagnostic forecasting.

Other neurological diseases

For the accurate identification of epileptic foci, MBrain [64]
reveals unique spike-and-wave discharge signatures during
seizures by explicitly capturing the intrinsic interplay between
spatial and temporal aspects of brain activity. Notably, this SSL
model demonstrates robust cross-patient generalizability, as
validated through extensive experiments on varied datasets
encompassing both SEEG and EEG signals, highlighting its
effectiveness in real-world applications. Furthermore, spatio-
temporal encoder with contrastive learning (CNN + LSTM)
enables the effective extraction of neural features from unlabeled
data in traumatic brain injury (TBI) patients [65]. Moreover, this
approach can identify multiple brain regions that contribute to
cognitive fatigue (CF), potentially delineating a fatigue network.
The brain regions tested using the Chaudhuri model of CF and
other fatigue-related brain areas are caudate, anterior insula,
medial prefrontal cortex, and middle frontal gyrus [66]. The
activation patterns in these regions reveal the neurobiological
basis of CF, and the model demonstrates superior accuracy in
predicting self-reported CF scores compared to traditional
methods, particularly beneficial in the rehabilitation of brain
injury patients [67].

Applications of SSL in Identifying
Disease Biomarkers

In the realm of brain network analysis for brain disorders, SSL
offers a powerful approach for identifying disease markers.
Typically, SSL methods achieve this by leveraging learned rep-
resentations from unlabeled data to rank features at the ROI
level or connectivity level. This ranking is based on the features’
contributions to classification tasks, which are often quantified
through ranking scores derived from feature importance mea-
sures in downstream models. For instance, graph-based SSL
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studies have identified critical ROIs and connectivity patterns
associated with disorders like AD [68-73] and ASD [68,74-78],
findings that align with prior neurobiological research. However,
a notable limitation emerges from the reliance on public datas-
ets, which are often cross-sectional in design and lack follow-up
visits involving disease-targeted interventions. This limit hinders
the validation of identified disease markers derived from SSL
studies, as it remains unclear whether they accurately reflect
disease progression or can effectively guide therapeutic out-
comes. Despite this challenge, intriguing insights have emerged
from multimodal SSL approaches. For example, previous studies
[70,79,80] demonstrated that an SSL model trained on multi-
modal neuroimaging data can enhance the biological plausibility
of the identified biomarkers, compared with single modality. This
suggests that multimodal SSL may provide a more comprehen-
sive view of brain alterations, potentially improving the robust-
ness and clinical relevance of disease marker identification.

Conclusion and Future Perspectives

Over the past few years, the rapid release of multisite and mul-
timodal neuropsychiatric brain functional neuroimaging data
has catalyzed remarkable advancements in SSL frameworks for
the detection and prediction of brain disorders. This systematic
review endeavors to offer a comprehensive overview of these
methods across diverse medical scenarios. In the subsequent
sections, we will provide a summary of the strengths and limita-
tions of the current SSL models in the context of brain disor-
ders, as well as discuss potential future opportunities.

Advantages and challenges

First, SSL enables consistent multimodal alignment and fusion
in neuroimaging data, as well as cross-modal generation. This
is particularly crucial in studying brain disorders, which often
manifest across multiple neuroimaging modalities. For exam-
ple, SSL demonstrates effective integration of misaligned and
unpaired multimodal neuroimaging data through the use of
generative tasks, resulting in superior stability and improved
performance in disease detection. In the context of AD, for
instance, SSL can effectively fuse structural MRI, functional
MRI, and EEG data to provide a more holistic view of the dis-
ease pathology, potentially leading to earlier and more accurate
diagnosis. By generating high-quality synthetic data, SSL can
also enhance neuroimage datasets and bolster disease discrimi-
native model performance in scenarios of data scarcity [81]
and missing modalities [82]. This is especially beneficial for
rare brain disorders where patient data are inherently limited.
Second, in clinical domains characterized by a scarcity of task-
specific neuroimaging data, SSL offers considerable benefits.
By leveraging self-supervised tasks like contrastive learning and
masked modeling, SSL enables models to extract generalized
features from unlabeled brain activity, showing promise for
few-shot or even zero-shot learning scenarios. This is highly
relevant to brain disorder research, where obtaining large,
labeled datasets for specific patient populations can be chal-
lenging and ethically complex. These latent neural representa-
tions effectively captured by SSL models may exhibit strong
transferability across diverse brain diseases. For example, with
only 20% annotated samples, SSL model can outperform the
supervised learning model in differentiating between ADHD
and isolated rapid eye movement sleep behavior disorder (iRBD)
[83], highlighting its great potential for clinical applications
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where annotated samples are limited. Extending this, SSL mod-
els trained on large, unlabeled datasets from healthy controls
and individuals with various brain disorders could potentially
be fine-tuned with limited labeled data to diagnose new patients
or even predict disease progression in conditions like PD.
However, the heuristic nature of pretraining task design poses
a significant challenge to this transferability. For instance,
masked modeling in SSL, such as reconstructing masked brain
regions, may not fully align with downstream tasks like disease
classification that require discriminative features rather than
comprehensive reconstructions [9]. This misalignment can limit
the model’s ability to prioritize disease-specific biomarkers, such
as altered connectivity in ADHD or iRBD, over general brain
activity patterns. Addressing this requires moving beyond man-
ual task design toward automated strategies, like neural archi-
tecture search, to optimize pretraining objectives for specific
clinical tasks, ensuring robust feature extraction tailored to brain
disorder heterogeneity. In contrast, contrastive learning may
offer a more suitable alternative for disease classification tasks
due to its focus on discriminative feature extraction. Methods
like SimCLR [17] and MoCo [84] optimize class invariance by
distinguishing similar and dissimilar samples [9], making them
adept at identifying subtle differences in brain activity patterns
critical for disorders like ADHD or PD. While our generative and
generative-contrastive approaches excel in data augmentation
under scarcity, their reconstruction bias may dilute classification
performance compared to contrastive methods, underscoring a
trade-off between generative robustness and discriminative
precision in clinical applications.

Third, the implementation of SSL process can provide novel
biological insights for neuroimaging-based disease detection
by adeptly capturing the internal spatiotemporal dependencies
inherent in brain activities. This ability to uncover hidden patterns
is particularly valuable for understanding the complex patho-
physiology of brain disorders. Identification of disease-specific
functional biomarkers can be facilitated by employing either con-
trastive multi-view learning, which ranks FC-wise contributions
[85], or region-aware graph attention mechanisms [86], utilizing
a masked auto-encoder module [42]. For example, using SSL,
researchers might identify novel FC patterns that are specifically
disrupted in schizophrenia, potentially leading to new therapeutic
targets focused on restoring these dysfunctional networks.

Itis crucial to underscore the current limitations of SSL when
applied to brain network applications. First, SSL approaches
often encounter difficulties in providing biologically meaningful
interpretations for model decisions. This issue is particularly
pertinent in the field of neuroimaging, where understanding the
underlying biological mechanisms is crucial for translating SSL
model outputs into actionable clinical insights. To address this,
there is a growing need to integrate SSL with domain knowledge
in neuroscience. For instance, incorporating known brain net-
work architectures or established neurobiological pathways as
constraints in SSL models could improve the interpretability of
learned features in the context of depression or anxiety disor-
ders. This could involve using prior biological insights to guide
the learning process, ensuring that the model’s features align
with known neurobiological processes. Second, there is ongoing
debate about the extent to which synthetic datasets generated
by GAN-based SSL models accurately mirror the characteristics
of real-world brain networks. The inherent uncertainty in gen-
erative frameworks, particularly when dealing with unbalanced
or sparse data distributions, raises concerns about the fidelity
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and reliability of these models. This is especially critical in brain
disorder datasets, which can be highly heterogeneous and influ-
enced by factors like medication, disease stage, and comorbidi-
ties. Generating realistic synthetic brain networks that capture
this complexity, especially for conditions like ASD with its
diverse clinical presentations, remains a significant hurdle. This
limitation emphasizes the need for more robust evaluation met-
rics and validation processes. Specifically, evaluating synthetic
data not only on statistical similarity but also on its ability to
reproduce known disease-related patterns and biomarkers is
crucial in brain disorder applications. Third, the multimodal
integration encounters several limitations that impede the
broader application of SSL in translational medical research. A
key challenge is data heterogeneity, as different modalities often
vary in spatial resolution, temporal dynamics, and noise char-
acteristics, making it difficult to align and integrate these diverse
data sources effectively. In the context of brain disorders, data
heterogeneity can be further exacerbated by variations in acqui-
sition protocols across different research sites or clinical settings,
making it difficult to pool and analyze large-scale multimodal
datasets for diseases like bipolar disorder or schizophrenia. For
instance, the integration of EEG with fMRI data necessitates
sophisticated algorithms to reconcile their intrinsic disparities.
The computational complexity in this scenario poses a consid-
erable challenge, especially for advanced models like hierarchi-
cal GCN and transformer-based architectures. These models
require substantial computational resources, which can limit
their scalability and real-time feasibility in clinical settings.
Another critical concern is the missing modalities within mul-
timodal SSL frameworks, where incomplete datasets are common
in real-world scenarios. While reconstruction-based SSL models,
exemplified by CD_SSL [87], endeavor to generate synthetic data
to compensate for missing information, the fidelity and biological
plausibility of these reconstructed features are frequently suscep-
tible to noise and biases inherent to specific modalities. In brain
disorder research, missing modalities can arise due to various
reasons, including patient compliance issues or limitations of
specific imaging techniques for certain populations (e.g., fMRI
in patients with metallic implants). The reconstructed data for
missing modalities, especially in sensitive contexts like pediatric
brain disorders, need to be carefully validated for potential biases
and artifacts. Overcoming these challenges necessitates the devel-
opment of innovative approaches that adeptly reconcile compu-
tational efficiency, interpretability, and resilience to data scarcity
or corruption, especially as multimodal integration techniques
increasingly approach practical implementation within the
realms of neuroscience and clinical practice.

Future opportunities

In the pursuit of advancing SSL methodologies for brain disorders,
it is imperative to encourage efforts aimed at addressing the trans-
diagnostic heterogeneity observed in psychological disorders,
particularly those with overlapping symptoms. Advancements in
SSL techniques, particularly those that capitalize on extensive
unlabeled brain functional datasets, demonstrate great potential
in discerning new subtypes of transdiagnostic psychosis. By cap-
turing subtle reconfiguration of brain functional dynamics, these
methods could pave the way for a deeper understanding of the
pathophysiological mechanisms of psychosis, leading to more
individualized treatment plans. Considering the critical role of
data harmonization in addressing site-specific variances within
multisite neuroimaging datasets, we advocate for the integration
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of this module into SSL frameworks by researchers. Furthermore,
brain activity decoding by SSL models may present new oppor-
tunities to elucidate the functional brain mechanisms underlying
cognitive states. Recent advancements in SSL have demonstrated
remarkable effectiveness in reconstructing visual-semantic infor-
mation from fMRI signals that are triggered by video stimuli
[88,89]. Broadly speaking, we hypothesize that the integration
of SSL-based models in decoding task-based brain functional
recordings for neuropsychiatric patients can uncover novel
insights underlying cognitive dysfunctions in brain disorders.
Such models offer a promising pathway for bridging neurosci-
ence and clinical practice, ultimately supporting the development
of innovative therapeutic strategies. Another promising future
direction lies in integrating nonimaging modalities into the SSL
framework. For instance, the proposed video-audio-text trans-
former (VATT) model [90] demonstrates the ability of SSL to
process raw video, audio, and text signals in parallel. It aligns
these signals in hierarchical common spaces using noise contras-
tive estimation (NCE) and multiple instance learning NCE (MIL-
NCE), achieving state-of-the-art performance. Similarly, in the
medical context, clinical interview videos that capture patient
visual and auditory cues (e.g., facial expressions and tone) could
be tokenized and encoded alongside medical notes. This process
could be potentially enhanced by domain-specific language
models such as BioBERT [91] to improve medical textual
understanding. The DropToken technique in VATT could also
mitigate computational challenges associated with high-resolution
video and lengthy notes. Future work could involve designing
medical-specific pretraining tasks, such as aligning video seg-
ments of patient interviews with corresponding diagnostic
descriptions in notes, and constructing a dataset of unlabeled
medical multimodal data to validate this approach. This exten-
sion not only broadens the applicability of SSL in healthcare but
also leverages the organic supervisory signals inherent in mul-
timodal medical data, reducing reliance on costly annotations.
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