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Importance: Precisely decoding brain dysfunction from high-dimensional functional recordings is 
crucial for advancing our understanding of brain dysfunction in brain disorders. Self-supervised learning 
(SSL) models offer a transformative approach for mapping dependencies in functional neuroimaging 
data. Leveraging the intrinsic organization of brain signals for comprehensive feature extraction, these 
models enable the analysis of critical neurofunctional features within a clinically relevant framework, 
overcoming challenges related to data heterogeneity and the scarcity of labeled data. Highlight: This 
paper provides a comprehensive overview of SSL techniques applied to functional neuroimaging data, 
such as functional magnetic resonance imaging and electroencephalography, with a specific focus on 
their applications in various neuropsychiatric disorders. We discuss 3 main categories of SSL methods: 
contrastive learning, generative learning, and generative-contrastive methods, outlining their basic 
principles and representative methods. Critically, we highlight the potential of SSL in addressing data 
scarcity, multimodal integration, and dynamic network modeling for disease detection and prediction. We 
showcase successful applications of these techniques in understanding and classifying conditions such 
as Alzheimer’s disease, Parkinson’s disease, and epilepsy, demonstrating their potential in downstream 
neuropsychological applications. Conclusion: SSL models provide a scalable and effective methodology 
for individual detection and prediction in brain disorders. Despite current limitations in interpretability 
and data heterogeneity, the potential of SSL for future clinical applications, particularly in the areas of 
transdiagnostic psychosis subtyping and decoding task-based brain functional recordings, is substantial.

Introduction

  Elucidating the spatiotemporal dynamics of brain functional 
reorganization in network neuroscience has advanced transla-
tional medical applications in brain disorders. This includes 
uncovering pathophysiological processes, enabling early iden-
tification, and facilitating therapeutic interventions for these 
conditions. Nevertheless, precisely decoding brain dysfunction 
from individual high-dimensional functional recordings, par-
ticularly those obtained through functional magnetic reso-
nance imaging (fMRI) and electroencephalography (EEG), still 
presents a considerable challenge. This is due to the inherent 
complexity of spatiotemporal functional activities within the 
brain’s multi-scale network architecture. Despite recent techni-
cal advancements in applying deep learning to decode brain 
dysfunction in brain disorders, the generalizability of these 
models is often limited. This limitation mainly stems from their 
reliance on supervised learning paradigms, which require 

sample-level annotations that assign specific brain disorders 
or behavioral phenotypes to individual data points [  1 ]. Data 
heterogeneity, labeling discrepancies, and brain disorder diver-
sity across imaging sites hinder the development of accurate, 
context-wide neuroimage decoding models [  2 ,  3 ].

  Self-supervised learning (SSL) has emerged as a promising 
tool for functional neuroimaging decoding due to its ability to 
leverage vast amounts of unlabeled data [  4 ]. Annotating brain 
data is often time-consuming, costly, and further complicated 
by the inherent temporal variability of neurological conditions. 
In contrast to conventional supervised learning approaches that 
are heavily dependent on large annotated datasets, SSL employs 
pretext tasks like contrastive learning and generative reconstruc-
tion to learn directly from unlabeled data. This is particularly 
important in neuroscience, where the scarcity of labeled data 
presents a marked challenge [  5 ]. By extracting intrinsic char-
acteristics from high-dimensional neural signals, the SSL 
model captures the spatiotemporal patterns of brain phenotypes, 
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allowing transferability to external datasets and new tasks. 
This attribute positions SSL as a transformative paradigm 
within the realm of functional neuroimaging research, offer-
ing a more scalable and effective tool to support clinical 
applications. Recent developments in SSL models, trained 
on diverse neuroimage datasets [ 5 –  8 ], encompassing genera-
tive learning, contrastive learning, and generative-contrastive 
frameworks [  9 ], have shown remarkable potential in down-
stream neuropsychological applications, including disease 
detection and outcome prediction [  10 –  13 ]. While some lit-
erature reviews have discussed the technical merits and chal-
lenges of SSL [ 9 ,  14 ,  15 ], a thorough overview of SSL-based 
medical applications in neuropsychological diseases remains 
to be established.

  This paper provides a thorough examination of the applica-
tion of SSL techniques for decoding brain dysfunction in the 
context of brain disorders. It begins with an overview of the 
foundational SSL methodologies and their significance in brain 
network computation. Key medical applications of SSL in 
addressing challenges such as data scarcity, multimodal integra-
tion, and dynamic network modeling in brain disorders are 
then discussed. The paper concludes by highlighting the cur-
rent limitations in SSL adoption for brain network analysis and 
proposing potential directions for future research to overcome 
these challenges.   

SSL Models
  Brain disease detection based on neuroimaging has been a chal-
lenge, attributed to the intricate reorganization of the brain 
network and the diverse neuropathological manifestations [  16 ]. 
By processing high-dimensional functional neuroimaging data, 
SSL models hold great promise for learning representations of 
complex neural activity, thereby facilitating downstream tasks. 
A general pipeline of SSL in neuropathological applications is 
illustrated in Fig.  1 . SSL models have recently demonstrated 
significant potential in the field of neuroimaging analysis. The 
core idea of SSL is to leverage vast amounts of unlabeled data 
for pretraining, learning general data representations to over-
come the challenge of data annotation scarcity. The pretext task 
is a crucial component within SSL models. The pretext task, also 
known as an auxiliary task or pretraining task, is a core com-
ponent of SSL. It is designed to create an artificial, easily solvable 
supervised learning task that uses unlabeled data to train a 
model, enabling it to learn general representations relevant to 
the data’s intrinsic characteristics. This learned representation 
then provides a foundation for downstream real-world tasks. 
In the field of neuroimaging, data annotation is costly, while 
unlabeled data are abundant. The introduction of pretext tasks 
allows us to fully utilize this unlabeled neuroimaging data to 
pretrain models and learn general representations of brain net-
works or brain activity patterns. These representations can 
be effectively transferred to various downstream tasks, such 
as brain disease classification and disease severity regression, 
improving model performance on these tasks and enhancing 
model generalizability across different datasets. In the field of 
neuroimaging, the design of pretext tasks also needs to fully 
consider the characteristics of neuroimaging data, such as high 
dimensionality, spatiotemporal dependency, and graph struc-
ture. In the following sections, we will introduce several typical 
SSL techniques, including contrastive learning, generative learn-
ing, and generative-contrastive learning, as shown in Fig.  2 .                  

Contrastive learning
  Contrastive learning aims to enhance the similarity of positive 
pairs of samples while reducing the similarity of negative pairs 
[  17 ]. By embedding high-dimensional data into latent spaces 
and aggregating similarities and alienating dissimilarities, con-
trastive learning models can effectively capture complex brain 
activity patterns through latent spatial representations, render-
ing them suitable for brain disorder detection. In the context 
of neuroimaging data, one can define positive pairs as patient 
data from the same brain region or contiguous time domains, 
and negative pairs as data from different brain regions or non-
contiguous time domains [  18 ]. Currently, contrastive learning 
has been widely used in processing human brain signals, 
including EEG and fMRI scans [  19 –  21 ].  

Graph-based contrastive learning
  Brain network data can be intuitively represented as graphs, 
where nodes correspond to brain regions or electrode positions, 
and edges capture functional or structural connectivity [  22 ]. 
This graph-based representation allows for the modeling of com-
plex brain networks and facilitates the application of advanced 
methods such as graph-based contrastive learning (GBCL) 
[  23 ], which has shown promise in uncovering meaningful rep-
resentations from brain data. Graph-based neural networks 
(GNNs), as a powerful deep learning framework for processing 
graph-structured data, have demonstrated remarkable capa-
bilities in modeling non-Euclidean data structures such as 
graphs. However, the inherent challenges of data labeling in 
these spaces necessitate the development of innovative solu-
tions. Recent advancements in GBCL combine the represen-
tational power of GNNs with the efficiency of SSL to extract 
meaningful features from brain connectivity maps [  24 ]. Within 
the framework of GNNs, various advanced models have been 
designed to tackle specific challenges in brain network analysis, 
including effective feature representation, noise reduction, and 
dynamic brain state modeling. While graph convolutional net-
works (GCNs) are primarily used for supervised learning tasks, 
their core ability to capture local and global features in graphs 
has inspired extensions into self-supervised frameworks, such 
as contrastive learning or graph autoencoders, which are better 
suited for tasks involving large-scale unlabeled brain data. For 
example, the contrastive FC graph learning (CGL) framework 
[  25 ] enhances connectivity pattern representations using spec-
tral convolution to model complex interactions across brain 
regions. In CGL, the pretext task involves contrastive learning 
on functional connectivity (FC) graphs, where the model 
defines positive pairs as FC graphs derived from nonoverlap-
ping region of interest (ROI) time series of the same subject 
and negative pairs as FC graphs from different subjects. This 
task encourages the model to learn representations that capture 
subject-specific connectivity patterns by maximizing the simi-
larity between positive pairs and minimizing it between nega-
tive pairs, using a contrastive loss function optimized over 
spectral graph convolutions. Additionally, a dynamic popula-
tion map is introduced, adapting network characteristics over 
time based on patient similarity, thereby improving the cluster-
ing of similar cases. GATE (graph CCA for temporal SSL) [  26 ] 
reinterprets contrastive learning for fMRI analysis by leveraging 
canonical correlation analysis (CCA) as a novel alignment 
mechanism. Through dynamic FC-based augmentations—step 
window augmentation (S-A) and multi-scale window augmen-
tation (M-A)—GATE generates diverse yet correlated views of 
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blood oxygen level-dependent (BOLD) signals, serving as posi-
tive pairs in the contrastive framework. The pretext task in 
GATE involves generating these augmented views of BOLD 
signals as positive pairs, contrasting them against views from 
different subjects or uncorrelated segments (negative pairs). 
The CCA-based loss maximizes the similarity between these 
embeddings while regularizing feature decorrelation to prevent 
collapse. Similarly, CMV-CGCN [  27 ] integrates FC and higher-
order functional connectivity (HOFC) features within a con-
trastive multi-view learning framework. By defining positive 

pairs (FC and HOFC of the same subject) and negative pairs 
(FC or HOFC from different subjects), the model employs a 
contrastive loss to maximize similarity between positive pairs 
while minimizing similarity between negative pairs. In addition 
to incorporating graph convolutional neural networks, MeTSK 
[  28 ] employs a novel meta-learning strategy that integrates SSL 
with a contrastive learning framework on graphs, facilitating 
effective knowledge transfer across domains. In the source 
domain, a graph contrastive loss is used to align embeddings 
from different temporal views of the same subject (positive pairs) 

Fig. 1. Overview of the typical SSL pipeline for neuroimaging data analysis. The top represents the brain network pipeline, where raw neurological data are systematically processed 
to extract meaningful representations. The bottom highlights the core self-supervised model, comprising an encoder–decoder architecture. These refined representations 
are then utilized for downstream tasks, such as disease categorization, detection, and prediction. The model’s bidirectional learning flow ensures robustness and adaptability 
across diverse neuroimaging datasets.
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while distinguishing them from embeddings of different sub-
jects (negative pairs). Concurrently, the target-specific task is 
optimized using a bilevel meta-learning framework, where the 
inner loop adapts to the target task, while the outer loop updates 
transferable graph representations. The fusion of advanced feature 
extraction and contrastive learning techniques enhances the flex-
ibility and general applicability of models in brain network analy-
sis, significantly benefiting neuroimaging data processing. For 
instance, to address the issue of noise, diffusion learning has 
been incorporated in some models. DGCL [  29 ] introduces the 
brain region-aware module to dynamically adjust population 
maps through diffusion processes, reducing noise and eliminat-
ing disease-related connections to enhance brain network con-
struction. Similarly, BrainNet [  30 ] incorporates hierarchical 

graph diffusion learning to simulate the spread of epileptic 
waves from stereoelectroencephalography (SEEG) data. Through 
the use of bidirectional contrastive predictive coding (BCPC), it 
aligns temporal embeddings by contrasting related and unre-
lated segments, ensuring that the learned representations cap-
ture essential dynamics. In BrainNet, the pretext task involves 
contrasting related temporal segments (positive pairs) against 
unrelated segments (negative pairs) within SEEG data, enabling 
the model to learn representations that reflect the temporal 
dynamics of epileptic wave propagation, which are critical for 
understanding and predicting seizure patterns.

  In summary, graph-based SSL leverages the structural char-
acteristics of graph data to efficiently extract both local and 
global features from brain networks without requiring labeled 

Fig. 2. The primary learning strategies within SSL models in neuroimage-based medical applications. In contrastive learning, the graph-based approach generates augmented 
views of brain graphs to maximize view similarity through encoders and decoders, while the spatiotemporal-based approach focuses on leveraging temporal neural signals for 
similar contrastive objectives. Generative learning includes a mask-based method, which reconstructs randomly masked brain regions to minimize reconstruction loss, and a 
VAE-based method, where neural imaging data are encoded and reconstructed to learn global patterns. Last, generative-contrastive learning combines generative modeling, 
such as GANs, with contrastive learning to capture intrinsic brain representations.
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data, providing robust support for complex brain network rep-
resentation. The incorporation of graph-specific properties 
enhances model adaptability and robustness, ensuring consis-
tency in feature representation by reducing noise and eliminat-
ing irrelevant connections. Techniques such as contrastive 
learning optimize the representation of nodes and edges, result-
ing in improved accuracy and generalization in detection and 
prediction tasks. These advantages establish graph-based SSL 
as a critical approach for analyzing graph-structured data in 
neuropsychological disease research.   

Spatiotemporal-based contrastive learning
  Effectively capturing spatial and temporal dependencies is crucial 
for the integration of multichannel neurophysiological time-series 
data regarding complex functional activity of the brain [  31 ,  32 ]. 
A dual-perspective approach that integrates spatial and temporal 
patterns allows the SSL model to identify dynamic changes in 
brain networks, thereby enhancing its discriminative or predictive 
capacity for brain diseases [  33 ,  34 ]. While traditional methods in 
neurosignal analysis often rely on static representations or sim-
plistic aggregation of temporal features, they fail to capture the 
intricate spatiotemporal dynamics and evolving patterns within 
brain networks. Advanced models [  35 –  37 ] have shifted toward 
leveraging time-series data, enabling the analysis of dynamic 
connectivity changes and long-range dependencies. To further 
enhance this capability, spatiotemporal-based contrastive learning 
frameworks have emerged, offering a more robust approach to 
disentangle temporal variations and spatial relationships, thereby 
addressing the constraints imposed by static and linear methods. 
For example, spatiotemporal hierarchical enhancement-based 
contrastive learning (ST-HACL) [  38 ] constitutes an advanced 
framework designed to improve spatiotemporal neurosignal 
analysis, combining contrastive learning principles with a GNN 
architecture. The InfoNCE objective function serves as the foun-
dation, enabling SSL through the optimization of feature repre-
sentations based on contrastive samples. The model distinguishes 
positive and negative sample pairs, which are critical to enhancing 
its ability to capture dynamic temporal relationships. Positive 
samples are created through augmentations of the same brain 
network, such as temporal window cropping or signal compres-
sion. In contrast, negative samples originate from augmented 
brain networks of different subjects. Hierarchical augmentation 
strategies tailored to brain network construction ensure the gen-
eration of high-quality contrastive samples, which strengthens 
the model’s ability to learn intricate spatiotemporal dependencies 
within dynamic brain signals. By introducing these complex pre-
text tasks, ST-HACL models achieve superior performance in 
learning long-range temporal dependencies and spatial interac-
tions across different brain regions. Traditional approaches, 
including recurrent neural networks (RNNs) and spatiotemporal 
deep infomax (ST-DIM) [  39 ], provide foundational insights that 
ST-HACL extends to achieve superior robustness and accuracy 
in predicting neurological disease progression. However, the pre-
text tasks in ST-HACL, through their ability to generate augmented 
views of the brain network and encourage the model to learn tem-
poral and spatial relationships, elevate the model’s performance 
significantly beyond what is achievable by traditional methods.    

Generative learning
  Generative learning addresses the challenge of annotation scar-
city in neurophysiological signal decoding by synthesizing 
features that closely resemble those found in real data, through 

the process of learning the underlying distribution of these 
samples [  40 ]. In this study, we mainly focus on 2 primary gen-
erative learning models applied in neuroimaging data, specifi-
cally variational autoencoders (VAEs) and mask-based learning 
(MAE). VAEs excel in latent representation and facilitate tasks 
like anomaly detection in brain imaging through efficient recon-
structions [  41 ]. In contrast, MAE complements generative goals 
by reconstructing missing or corrupted data, ensuring data 
integrity [  42 ]. These approaches are particularly valuable in 
neuroimaging, where labeled data are often limited, and genera-
tive models can mitigate this by producing synthetic samples 
that enhance downstream tasks such as disease classification. 
However, their reliance on reconstruction objectives may pri-
oritize low-level details over high-level features critical for clas-
sification, a limitation noted in generative SSL [ 9 ].  

VAE-based generative learning
  By leveraging probabilistic modeling of brain network struc-
tures, VAEs are capable of extracting disentangled latent repre-
sentations of neural information. For instance, the deep causality 
variational autoencoder (CVAE) [  43 ] model extends the tradi-
tional VAE framework by introducing a causal layer, enabling 
the direct inference of causal relationships between brain regions 
from time-series fMRI data. This approach bypasses the restric-
tive constraints of conventional methods, such as acyclic graph 
structures, while simultaneously reconstructing brain network 
structures and capturing spatiotemporal dynamics. Similarly, 
the deep variational autoencoder (DVAE) [  44 ] model employs 
variational inference to uncover underlying structures within 
high-dimensional MRI data, generating interpretable represen-
tations of brain activity and enables the extraction of generalized 
features, enhancing the robustness and generalizability of brain 
network analysis. DynaMorph [  45 ] advances the analysis of 
dynamic brain morphology through a vector quantization varia-
tional autoencoder (VQ-VAE) framework. By integrating tem-
poral regularization, DynaMorph ensures smooth transitions 
across various brain states, facilitating the examination of brain 
dynamics in diverse contexts. This simultaneous learning of 
latent characterizations enables the model to delineate and ana-
lyze complex spatiotemporal changes in cellular brain networks, 
promoting a deeper understanding of time-evolving brain struc-
tures. Beyond standalone VAE-based frameworks, hemispher-
ically separated cross-connected group aggregate learning 
(HCAL) [  46 ] combines the strengths of VAEs and generative 
adversarial networks (GANs) in a VAE-GAN hybrid architec-
ture. HCAL, tailored for neurodegenerative disease analysis, 
synthesizes diverse and realistic structural connectivity matrices 
by emphasizing both intra- and interhemispheric connections. 
Its hemispherical dissociation generator adeptly captures local 
and global topological features, and a connection-aware dis-
criminator stabilizes adversarial training, thereby enriching the 
structural connectivity data essential for brain network analysis. 
In summary, VAE-based models have demonstrated exceptional 
efficacy in brain network analysis, particularly in capturing com-
plex spatiotemporal dynamics within brain regions. Through 
innovative frameworks and hybrid architectures, these models 
provide robust tools for addressing challenges such as data scar-
city, overfitting, and the inherent variability of brain networks. 
Their strength lies in modeling complete data distributions, 
making them ideal for tasks requiring reconstruction, such as 
anomaly detection in brain imaging. However, for disease clas-
sification tasks like identifying neurodegenerative patterns, their 
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focus on reconstruction may capture extraneous details irrele-
vant to discriminative features, potentially reducing perfor-
mance compared to contrastive methods. Additionally, their 
computational complexity can hinder scalability when applied 
to large-scale neuroimaging datasets.   

Mask-based generative learning
  Mask-based models tackle the challenges posed by the complex-
ity of brain connectivity and noise uncertainty in traditional 
brain network analysis, which often result in incomplete repre-
sentations. By strategically masking regions or connections dur-
ing training, these models are better equipped to learn deeper 
and more meaningful representations of brain networks. For 
instance, the BrainMAE [  47 ] model utilizes a mask autoencod-
ing framework specifically designed for fMRI data, where the 
key innovation lies in the region-aware graph attention mecha-
nism, which focuses on the interactions between brain regions 
while reconstructing masked areas, and enhances the model’s 
ability to process noisy fMRI data, leading to the extraction of 
robust and interpretable brain signal representations. Similarly, 
EAG-RS [  48 ] employs a random seed-based network masking 
approach, masking ROI to force the model to learn nonlinear 
relationships between functional connections. By prioritizing 
higher-order functional connections and incorporating hierar-
chical correlation propagation (LRP), this method ensures that 
the reconstructed connections are indispensable for accurately 
recovering the masked functional connections. Overall, the 
fusion of masking strategies and advanced graph-based tech-
niques underscores the importance of mask-based models as a 
robust tool for tackling challenges in brain network analysis. 
Models excel in denoising and enhancing data integrity, which 
is crucial for handling noisy neuroimaging data and can support 
disease classification by reconstructing disease-relevant con-
nectivity patterns, such as those altered in disorders like epi-
lepsy. Nevertheless, their effectiveness heavily depends on the 
masking strategy; poorly designed masks may fail to emphasize 
critical features, leading to suboptimal representations for 
downstream tasks. Moreover, unlike contrastive methods that 
directly optimize class separation, mask-based approaches may 
struggle to prioritize discriminative features, potentially limiting 
their utility in fine-grained classification tasks.    

Generative-contrastive learning
  Generative-contrastive SSL leverages the advantages of gen-
erative models and contrastive learning for robust representa-
tion learning. It typically includes 2 principal components: a 
generator and a discriminator. The generator produces syn-
thetic data that approximate the true data distribution, while the 
discriminator learns to distinguish between real and generated 
samples. Here, we will introduce advantages of some generative-
contrastive SSL models applied in neuroimaging data.  

GAN-based generative-contrastive learning
  Among generative-contrastive methods, GAN stands out as 
the most notable model [  49 ]. By generating and contrasting 
synthetic brain networks or functional activities, this architec-
ture tackles key challenges in brain network analysis, including 
the scarcity of large labeled datasets and the variability inherent 
in brain connectivity. This approach can particularly optimize 
the use of small-sample datasets, bolstering model robustness 
and generalizability. Furthermore, GANs support tasks such as 

cross-modal synthesis and data completion, which can expedite 
training processes and enhance the accuracy of predictions in 
neurological disease diagnosis. For instance, in the context of 
disease classification, such as distinguishing Alzheimer’s dis-
ease (AD) from healthy controls, GANs can generate synthetic 
brain connectivity patterns to augment limited labeled data, 
thereby improving the model’s ability to identify subtle disease-
specific features that might otherwise be obscured by data scar-
city [ 9 ]. However, their effectiveness depends on the stability 
of training, as GANs are prone to collapse without careful tun-
ing. For instance, graph-based conditional generative adver-
sarial networks (GC-GANs) [  50 ] adopt a conditional GAN 
framework that incorporates additional information, such as 
node or graph labels, to guide the generation process, which 
ensures that the synthetic graph structures remain consistent 
with their real counterparts. Furthermore, a class-aware dis-
criminator enhances the diversity and quality of generated 
outputs, mitigating the issue of data scarcity while preserving 
the global and local topological characteristics of brain net-
works. In GraphGAN++ [  51 ], the graph generator employs 
Wasserstein generative adversarial networks (WGANs) [  52 ] to 
stabilize the training process and prevent mode collapse. 
Additionally, a 3-stage learning framework, combined with a 
topological loss function, reduces uncorrelated multi-graph 
clustering and noise-related issues in brain network generation. 
By integrating GCNs with α-GAN, the α-GCNGAN [  53 ] frame-
work uses graph variational autoencoders (GVAEs) [  54 ] to 
model the intrinsic structure of brain networks. The encoding 
discriminator further ensures that the posterior distribution of 
the latent space aligns with the prior, achieving more accurate 
graph generation. This precision in modeling brain network 
topology can be particularly beneficial for disease classification 
tasks, where capturing fine-grained connectivity differences—
such as those between healthy and diseased states—is critical. 
Yet, the computational complexity and potential for overfitting 
to generated samples may limit its scalability across diverse 
neuroimaging datasets [ 9 ].   

Other generative-contrastive learning
  BrainMass [  55 ], a novel generative-contrastive learning model, 
captures individual brain activity patterns across over 30 datasets, 
demonstrating strong generalizability in identifying various 
brain disorders. It integrates the masked region module (MRM) 
and latent representation alignment (LRA) module to enable 
simultaneous generative-contrastive learning. The MRM in 
BrainMass randomly masks brain regions and uses the remaining 
features to reconstruct the masked areas, thereby strengthening 
inter-regional connections and maintaining local network prop-
erties. Meanwhile, the LRA module regularizes augmented brain 
networks from the same subjects, ensuring similarity in latent 
embeddings despite pseudo-FC enhancements. This dual-module 
design balances generative learning through feature reconstruc-
tion with contrastive alignment of network representations, 
facilitating the accurate extraction of disease-specific biomarkers. 
Empirical evidence indicates that the dual-module architecture 
excels in terms of generalizability and adaptability, in the context 
of disease discrimination across various conditions. Compared 
to purely contrastive methods like SimCLR [ 17 ], BrainMass’s 
generative component enhances its ability to model complex 
brain activity patterns, making it particularly suitable for diseases 
with heterogeneous manifestations, such as schizophrenia or 
epilepsy. However, its reliance on reconstructing masked regions 
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may introduce biases if the masking strategy does not adequately 
reflect disease-relevant variability, a limitation noted in genera-
tive methods by Liu et al. [ 9 ]

  Contrasting BrainMass’s focus on single-modal masking 
and attention, SSL models encompassing decomposed-VAE 
module specialize in multimodal fusion and decomposition, 
enhancing the understanding of brain network’s structural-
functional interplay. For instance, a novel SSL model, named 
brain structure-function fusion-representation learning (BSFL), 
is introduced to efficiently derive integrated representations 
from structural and functional MRI data for the detection of 
mild cognitive impairment (MCI). Specifically, the generative 
module, implemented through variational graph autoencoders, 
decomposes the feature space of multimodal MRI data into 
shared and modality-specific representations. These representa-
tions are reconstructed to retain unimodal information, while 
the fusion of decomposed features generates unified brain net-
works, thereby ensuring structural-functional complementarity. 
Besides, the contrastive learning module utilizes a uniform-
unique contrastive loss function to maximize the separation 
between unique representations within each modality while 
minimizing the distance between shared representations across 
modalities. This synergistic design enhances the accuracy of 
feature decomposition and effectively captures complementary, 
disease-specific connectivity patterns, leading to a significant 
improvement in the prediction of brain abnormalities associ-
ated with MCI.     

Medical Applications of SSL
  SSL models demonstrate a remarkable advantage by harnessing 
extensive unlabeled datasets to learn the intrinsic network reor-
ganization signatures associated with brain disorders, thus pav-
ing the way for innovative tools in disease screening, diagnostic 
detection, and prognostic forecasting. To comprehensively 
review the applications of SSL in brain functional impairments 
of brain disorders, we conducted a systematic literature search 
and screening. The databases searched include PubMed, Web 
of Science, and Scopus, covering the period from 2019 to 2024. 
The search keywords used were self-supervised learning, con-
trastive learning, generative learning, brain, fMRI, EEG, and 
brain disorders. The review was limited to literature in the 
English language. The titles and abstracts of all retrieved articles 
were examined. For those works that appeared to be potentially 
relevant, the full texts were accessed and retrieved. Duplicate 
publications were excluded. Following a rigorous literature 
screening spanning the past 5 years, a selection of 26 related 
literatures has been identified and listed in Tables  1  to  3 . We 
will summarize these medical applications as below.     

Neurodegenerative disorders
  As research into AD deepens, understanding how func-
tional brain networks deteriorate with disease progression has 
become increasingly critical. Traditional static modeling [  56 ,  57 ] 
approaches often fall short in fully capturing these dynamic 
changes, as they provide only a snapshot of network states rather 
than their evolution over time. In contrast, advanced dynamic 
modeling techniques offer a novel perspective by tracking the 
temporal progression of network alterations, shedding light on 
the underlying mechanisms of neurodegeneration. Building on 
this, the dynamic modeling strategy of DynaMorph [ 45 ] effec-
tively captures the progressive deterioration of functional brain 

networks in AD patients. Specifically, it identifies distinct tem-
poral patterns of network disruption, including the sequential 
weakening of long-range connectivity and the emergence of 
localized network instability. These findings provide deeper 
insights into how the pathological features of AD evolve over 
time, potentially illuminating critical windows for therapeutic 
intervention. Similarly, DGCL [ 29 ] applies a graph-based self-
supervised contrastive learning framework to identify 17 critical 
ROIs associated with AD, including the frontal lobe, precuneus, 
paracentral lobule, superior frontal gyrus, and caudate nucleus. 
This framework leverages node-level representations by maxi-
mizing agreement between augmented views of the same brain 
region while minimizing similarity across different regions. The 
reconstructed brain networks highlight pathological disrup-
tions in AD, such as weakened long-range FC (e.g., between the 
frontal lobe and precuneus) and increased segregation within 
local subnetworks, reflecting impaired global integration and 
abnormal local clustering. The masking learning mechanism of 
ST-MAE [  58 ] leverages a spatiotemporal masked autoencoding 
approach to dynamically reconstruct FC networks. In the con-
text of Parkinson’s disease (PD), ST-MAE effectively identifies 
disrupted connections between the basal ganglia and cortex, as 
well as abnormalities in cortico-striatal and cortico-thalamic 
pathways, which facilitates the identification of specific biomark-
ers, such as weakened interregional connectivity strength and 
altered clustering coefficients, which are indicative of disease 
progression and severity. Single-photon emission computed 
tomography (SPECT) imaging parameters, including striatum 
asymmetry, putamen-to-caudate ratios, and regional uptake val-
ues, were combined with clinical variables such as age, biomarkers, 
and symptom profiles to construct multimodal graph representa-
tions. Through the application of co-attention mechanisms, 
alignment between imaging-derived and clinically derived 
feature spaces was achieved, enabling the extraction of shared 
embeddings. As a result, the multimodal contrastive cross-view 
graph learning framework [  59 ] approach facilitated the delinea-
tion of distinct clusters specific to PD patients. Insights gained 
from these embeddings have revealed not only the heterogeneity 
in patient-specific pathological variations but also the dopami-
nergic dysfunction underlying disease progression, providing 
a foundation for tailored therapeutic strategies in the future.   

Mental disorders
  The CMV-CGCN framework [ 27 ] has identified distinct and 
quantifiable patterns of abnormal FC in the brains of individuals 
with autism spectrum disorder (ASD), which includes disrupted 
correlations between specific brain regions and higher-order 
interactions that contribute to the unique FC profiles associated 
with ASD. Moreover, the synergistic integration of FC and HOFC 
highlights the hierarchical organization and intricate interactions 
within the brain networks of ASD patients. GraphGAN++ [ 51 ] 
effectively identifies biologically meaningful functional subnet-
works and detects subtle abnormalities in the brain networks of 
ASD patients. Through multi-graph clustering based on resting-
state brain FC, this model reveals ASD-specific network reorga-
nization, including disrupted inter-regional connectivity and 
weakened local network integration. The identified subnetworks 
are consistent with previous neuroimaging studies [  60 –  62 ], rein-
forcing the validity of ASD-specific biomarkers. Notably, some 
specific aberrant functional connections are directly associated 
with core ASD symptoms, including deficits in social interaction 
and repetitive behaviors. GCN_SSL [ 63 ] effectively monitors 
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long-term dynamic shifts in brain functional networks during 
ASD symptom progression, pinpointing time-dependent con-
nectivity changes in brain areas linked to social behavior, such 
as fluctuations in the FC of the amygdala, hippocampus, and 
fusiform gyrus. These changes are crucial for understanding 
social cognition and emotion regulation in the developmental 
trajectory of ASD, providing insights into the underlying neural 
mechanisms and potential biomarkers. To tackle the heterogeneity 
of attention-deficit/hyperactivity disorder (ADHD), BrainMass 
[ 55 ] has successfully pinpointed crucial biomarkers linked to 
temporal fluctuations in ADHD-related brain network connec-
tivity. This research underscores the significance of subnetworks 
like the default mode and control networks, which exhibit altered 
interactions in individuals with ADHD. Besides, the DVAE [ 44 ] 
facilitates the creation of functional brain networks from resting-
state fMRI data, enabling the identification of potential ADHD 
biomarkers. These biomarkers, manifested in unique FC pat-
terns, serve as a foundation for differentiating individuals with 
ADHD from healthy controls and offer a deeper understanding 
of the disorder’s neurobiological underpinnings. In summary, 
SSL models encode complex neuroimaging data into a latent 
space, enabling the extraction and analysis of key neurofunc-
tional features within a clinically relevant context. This approach 
has revealed distinctive biomarkers linked to attention deficits 
and impulsivity, which aids in the more accurate detection of 
ADHD subtypes and supports early diagnostic forecasting.   

Other neurological diseases
  For the accurate identification of epileptic foci, MBrain [ 64 ] 
reveals unique spike-and-wave discharge signatures during 
seizures by explicitly capturing the intrinsic interplay between 
spatial and temporal aspects of brain activity . Notably, this SSL 
model demonstrates robust cross-patient generalizability, as 
validated through extensive experiments on varied datasets 
encompassing both SEEG and EEG signals, highlighting its 
effectiveness in real-world applications. Furthermore, spatio-
temporal encoder with contrastive learning (CNN + LSTM) 
enables the effective extraction of neural features from unlabeled 
data in traumatic brain injury (TBI) patients [  65 ]. Moreover, this 
approach can identify multiple brain regions that contribute to 
cognitive fatigue (CF), potentially delineating a fatigue network. 
The brain regions tested using the Chaudhuri model of CF and 
other fatigue-related brain areas are caudate, anterior insula, 
medial prefrontal cortex, and middle frontal gyrus [  66 ]. The 
activation patterns in these regions reveal the neurobiological 
basis of CF, and the model demonstrates superior accuracy in 
predicting self-reported CF scores compared to traditional 
methods, particularly beneficial in the rehabilitation of brain 
injury patients [  67 ].    

Applications of SSL in Identifying  
Disease Biomarkers
  In the realm of brain network analysis for brain disorders, SSL 
offers a powerful approach for identifying disease markers. 
Typically, SSL methods achieve this by leveraging learned rep-
resentations from unlabeled data to rank features at the ROI 
level or connectivity level. This ranking is based on the features’ 
contributions to classification tasks, which are often quantified 
through ranking scores derived from feature importance mea-
sures in downstream models. For instance, graph-based SSL 
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studies have identified critical ROIs and connectivity patterns 
associated with disorders like AD [  68 –  73 ] and ASD [ 68 ,  74 –  78 ], 
findings that align with prior neurobiological research. However, 
a notable limitation emerges from the reliance on public datas-
ets, which are often cross-sectional in design and lack follow-up 
visits involving disease-targeted interventions. This limit hinders 
the validation of identified disease markers derived from SSL 
studies, as it remains unclear whether they accurately reflect 
disease progression or can effectively guide therapeutic out-
comes. Despite this challenge, intriguing insights have emerged 
from multimodal SSL approaches. For example, previous studies 
[  70 ,  79 ,  80 ] demonstrated that an SSL model trained on multi-
modal neuroimaging data can enhance the biological plausibility 
of the identified biomarkers, compared with single modality. This 
suggests that multimodal SSL may provide a more comprehen-
sive view of brain alterations, potentially improving the robust-
ness and clinical relevance of disease marker identification.   

Conclusion and Future Perspectives
  Over the past few years, the rapid release of multisite and mul-
timodal neuropsychiatric brain functional neuroimaging data 
has catalyzed remarkable advancements in SSL frameworks for 
the detection and prediction of brain disorders. This systematic 
review endeavors to offer a comprehensive overview of these 
methods across diverse medical scenarios. In the subsequent 
sections, we will provide a summary of the strengths and limita-
tions of the current SSL models in the context of brain disor-
ders, as well as discuss potential future opportunities.  

Advantages and challenges
  First, SSL enables consistent multimodal alignment and fusion 
in neuroimaging data, as well as cross-modal generation. This 
is particularly crucial in studying brain disorders, which often 
manifest across multiple neuroimaging modalities. For exam-
ple, SSL demonstrates effective integration of misaligned and 
unpaired multimodal neuroimaging data through the use of 
generative tasks, resulting in superior stability and improved 
performance in disease detection. In the context of AD, for 
instance, SSL can effectively fuse structural MRI, functional 
MRI, and EEG data to provide a more holistic view of the dis-
ease pathology, potentially leading to earlier and more accurate 
diagnosis. By generating high-quality synthetic data, SSL can 
also enhance neuroimage datasets and bolster disease discrimi-
native model performance in scenarios of data scarcity [  81 ] 
and missing modalities [  82 ]. This is especially beneficial for 
rare brain disorders where patient data are inherently limited. 
Second, in clinical domains characterized by a scarcity of task-
specific neuroimaging data, SSL offers considerable benefits. 
By leveraging self-supervised tasks like contrastive learning and 
masked modeling, SSL enables models to extract generalized 
features from unlabeled brain activity, showing promise for 
few-shot or even zero-shot learning scenarios. This is highly 
relevant to brain disorder research, where obtaining large, 
labeled datasets for specific patient populations can be chal-
lenging and ethically complex. These latent neural representa-
tions effectively captured by SSL models may exhibit strong 
transferability across diverse brain diseases. For example, with 
only 20% annotated samples, SSL model can outperform the 
supervised learning model in differentiating between ADHD 
and isolated rapid eye movement sleep behavior disorder (iRBD) 
[  83 ], highlighting its great potential for clinical applications 

where annotated samples are limited. Extending this, SSL mod-
els trained on large, unlabeled datasets from healthy controls 
and individuals with various brain disorders could potentially 
be fine-tuned with limited labeled data to diagnose new patients 
or even predict disease progression in conditions like PD. 
However, the heuristic nature of pretraining task design poses 
a significant challenge to this transferability. For instance, 
masked modeling in SSL, such as reconstructing masked brain 
regions, may not fully align with downstream tasks like disease 
classification that require discriminative features rather than 
comprehensive reconstructions [ 9 ]. This misalignment can limit 
the model’s ability to prioritize disease-specific biomarkers, such 
as altered connectivity in ADHD or iRBD, over general brain 
activity patterns. Addressing this requires moving beyond man-
ual task design toward automated strategies, like neural archi-
tecture search, to optimize pretraining objectives for specific 
clinical tasks, ensuring robust feature extraction tailored to brain 
disorder heterogeneity. In contrast, contrastive learning may 
offer a more suitable alternative for disease classification tasks 
due to its focus on discriminative feature extraction. Methods 
like SimCLR [ 17 ] and MoCo [  84 ] optimize class invariance by 
distinguishing similar and dissimilar samples [ 9 ], making them 
adept at identifying subtle differences in brain activity patterns 
critical for disorders like ADHD or PD. While our generative and 
generative-contrastive approaches excel in data augmentation 
under scarcity, their reconstruction bias may dilute classification 
performance compared to contrastive methods, underscoring a 
trade-off between generative robustness and discriminative 
precision in clinical applications.

  Third, the implementation of SSL process can provide novel 
biological insights for neuroimaging-based disease detection 
by adeptly capturing the internal spatiotemporal dependencies 
inherent in brain activities. This ability to uncover hidden patterns 
is particularly valuable for understanding the complex patho-
physiology of brain disorders. Identification of disease-specific 
functional biomarkers can be facilitated by employing either con-
trastive multi-view learning, which ranks FC-wise contributions 
[  85 ], or region-aware graph attention mechanisms [  86 ], utilizing 
a masked auto-encoder module [ 42 ]. For example, using SSL, 
researchers might identify novel FC patterns that are specifically 
disrupted in schizophrenia, potentially leading to new therapeutic 
targets focused on restoring these dysfunctional networks.

  It is crucial to underscore the current limitations of SSL when 
applied to brain network applications. First, SSL approaches 
often encounter difficulties in providing biologically meaningful 
interpretations for model decisions. This issue is particularly 
pertinent in the field of neuroimaging, where understanding the 
underlying biological mechanisms is crucial for translating SSL 
model outputs into actionable clinical insights. To address this, 
there is a growing need to integrate SSL with domain knowledge 
in neuroscience. For instance, incorporating known brain net-
work architectures or established neurobiological pathways as 
constraints in SSL models could improve the interpretability of 
learned features in the context of depression or anxiety disor-
ders. This could involve using prior biological insights to guide 
the learning process, ensuring that the model’s features align 
with known neurobiological processes. Second, there is ongoing 
debate about the extent to which synthetic datasets generated 
by GAN-based SSL models accurately mirror the characteristics 
of real-world brain networks. The inherent uncertainty in gen-
erative frameworks, particularly when dealing with unbalanced 
or sparse data distributions, raises concerns about the fidelity 
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and reliability of these models. This is especially critical in brain 
disorder datasets, which can be highly heterogeneous and influ-
enced by factors like medication, disease stage, and comorbidi-
ties. Generating realistic synthetic brain networks that capture 
this complexity, especially for conditions like ASD with its 
diverse clinical presentations, remains a significant hurdle. This 
limitation emphasizes the need for more robust evaluation met-
rics and validation processes. Specifically, evaluating synthetic 
data not only on statistical similarity but also on its ability to 
reproduce known disease-related patterns and biomarkers is 
crucial in brain disorder applications. Third, the multimodal 
integration encounters several limitations that impede the 
broader application of SSL in translational medical research. A 
key challenge is data heterogeneity, as different modalities often 
vary in spatial resolution, temporal dynamics, and noise char-
acteristics, making it difficult to align and integrate these diverse 
data sources effectively. In the context of brain disorders, data 
heterogeneity can be further exacerbated by variations in acqui-
sition protocols across different research sites or clinical settings, 
making it difficult to pool and analyze large-scale multimodal 
datasets for diseases like bipolar disorder or schizophrenia. For 
instance, the integration of EEG with fMRI data necessitates 
sophisticated algorithms to reconcile their intrinsic disparities. 
The computational complexity in this scenario poses a consid-
erable challenge, especially for advanced models like hierarchi-
cal GCN and transformer-based architectures. These models 
require substantial computational resources, which can limit 
their scalability and real-time feasibility in clinical settings. 
Another critical concern is the missing modalities within mul-
timodal SSL frameworks, where incomplete datasets are common 
in real-world scenarios. While reconstruction-based SSL models, 
exemplified by CD_SSL [  87 ], endeavor to generate synthetic data 
to compensate for missing information, the fidelity and biological 
plausibility of these reconstructed features are frequently suscep-
tible to noise and biases inherent to specific modalities. In brain 
disorder research, missing modalities can arise due to various 
reasons, including patient compliance issues or limitations of 
specific imaging techniques for certain populations (e.g., fMRI 
in patients with metallic implants). The reconstructed data for 
missing modalities, especially in sensitive contexts like pediatric 
brain disorders, need to be carefully validated for potential biases 
and artifacts. Overcoming these challenges necessitates the devel-
opment of innovative approaches that adeptly reconcile compu-
tational efficiency, interpretability, and resilience to data scarcity 
or corruption, especially as multimodal integration techniques 
increasingly approach practical implementation within the 
realms of neuroscience and clinical practice.   

Future opportunities
  In the pursuit of advancing SSL methodologies for brain disorders, 
it is imperative to encourage efforts aimed at addressing the trans-
diagnostic heterogeneity observed in psychological disorders, 
particularly those with overlapping symptoms. Advancements in 
SSL techniques, particularly those that capitalize on extensive 
unlabeled brain functional datasets, demonstrate great potential 
in discerning new subtypes of transdiagnostic psychosis. By cap-
turing subtle reconfiguration of brain functional dynamics, these 
methods could pave the way for a deeper understanding of the 
pathophysiological mechanisms of psychosis, leading to more 
individualized treatment plans. Considering the critical role of 
data harmonization in addressing site-specific variances within 
multisite neuroimaging datasets, we advocate for the integration 

of this module into SSL frameworks by researchers. Furthermore, 
brain activity decoding by SSL models may present new oppor-
tunities to elucidate the functional brain mechanisms underlying 
cognitive states. Recent advancements in SSL have demonstrated 
remarkable effectiveness in reconstructing visual-semantic infor-
mation from fMRI signals that are triggered by video stimuli 
[  88 ,  89 ]. Broadly speaking, we hypothesize that the integration 
of SSL-based models in decoding task-based brain functional 
recordings for neuropsychiatric patients can uncover novel 
insights underlying cognitive dysfunctions in brain disorders. 
Such models offer a promising pathway for bridging neurosci-
ence and clinical practice, ultimately supporting the development 
of innovative therapeutic strategies. Another promising future 
direction lies in integrating nonimaging modalities into the SSL 
framework. For instance, the proposed video-audio-text trans-
former (VATT) model [  90 ] demonstrates the ability of SSL to 
process raw video, audio, and text signals in parallel. It aligns 
these signals in hierarchical common spaces using noise contras-
tive estimation (NCE) and multiple instance learning NCE (MIL-
NCE), achieving state-of-the-art performance. Similarly, in the 
medical context, clinical interview videos that capture patient 
visual and auditory cues (e.g., facial expressions and tone) could 
be tokenized and encoded alongside medical notes. This process 
could be potentially enhanced by domain-specific language 
models such as BioBERT [  91 ] to improve medical textual 
understanding. The DropToken technique in VATT could also 
mitigate computational challenges associated with high-resolution 
video and lengthy notes. Future work could involve designing 
medical-specific pretraining tasks, such as aligning video seg-
ments of patient interviews with corresponding diagnostic 
descriptions in notes, and constructing a dataset of unlabeled 
medical multimodal data to validate this approach. This exten-
sion not only broadens the applicability of SSL in healthcare but 
also leverages the organic supervisory signals inherent in mul-
timodal medical data, reducing reliance on costly annotations.    
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