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Background: Major depressive disorder (MDD) and autism spectrum disorder (ASD) are complex and
heterogeneous neuropsychiatric disorders with overlapping symptoms, presenting remarkable challenges
for accurate diagnosis. Leveraging functional neuroimaging data offers an opportunity to develop more
robust, data-driven approach for psychiatric disorder detection. However, existing methods often struggle
to capture the long-term dependencies and dynamic patterns inherent in such data, particularly across
diverse imaging sites. Methods: We propose Multiscale Contextual Mamba (MSC-Mamba), a Mamba-based
model designed for capturing long-term dependencies in multivariate time-series data while maintaining
linear scalability, allowing us to account for long-range interactions and subtle dynamic patterns within
the brain’s functional networks. One of the main advantages of MSC-Mamba is its ability to leverage the
distinct characteristics of time-series data, allowing it to generate meaningful contextual information
across various scales. This method effectively addresses both channel-mixing and channel-independence
scenarios, facilitating the selection of relevant features for prediction by considering both global and local
contexts at multiple scales. Results: Two large-scale multisite functional magnetic resonance imaging
datasets, including REST-meta-MDD (n = 1,642) and Autism Brain Imaging Data Exchange (ABIDE) (n =
1,022), were used to validate the performance of our proposed approach. MSC-Mamba has achieved state-
of-the-art performance, with an accuracy of 69.91% for MDD detection and 73.08% for ASD detection. The
results demonstrate the model’s robust generalization across imaging sites and its sensitivity to intricate
brain network dynamics. Conclusions: This paper demonstrates the potential of state-space models in
advancing psychiatric neuroimaging research. The findings suggest that such models can significantly
enhance detection accuracy for MDD and ASD, pointing toward more reliable, data-driven diagnostic tools
in psychiatric disorder detection.
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Introduction

Psychiatric disorders constitute a predominant source of sub-
stantial social and economic strain on healthcare systems glob-
ally, severely impairing the welfare of individuals afflicted [1].
Despite extensive research over several decades, the identifica-
tion of unified or definitive biomarkers within the field of psy-
chiatry remains elusive [2]. This uncertainty may stem from
the fact that psychiatric diagnoses are predominantly anchored
in clinical manifestations and signs, rather than on the underly-
ing biological substrates. For instance, the diagnosis of major
depressive disorder (MDD) is typically confirmed when patients
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exhibit a minimum of 5 out of 9 specific clinical symptoms,
including but not limited to a depressed mood, anhedonia, and
cognitive dysfunctions [3,4]. This approach results in signifi-
cant clinical heterogeneity among patients who share the same
diagnostic label [5]. Such heterogeneity has impeded research-
ers’ ability to identify reliable biomarkers through conventional
case—control methodologies, which compare patients with the
same diagnosis to healthy controls (HC) [6]. Most critically,
this has impeded advancements in the efficacy and outcomes
of treatments for psychiatric disorders [7].

Functional magnetic resonance imaging (fMRI) has proven
effective in studying the neurobiological substrates of psychiatric
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disorders. The blood-oxygen-level-dependent (BOLD) time-
series data derived from fMRI offer critical insights into the func-
tional connectivity and the dynamic nature of brain networks.
However, the analysis of this high-dimensional data presents
significant challenges, particularly in terms of capturing both
local and global temporal dependencies. Traditional machine
learning approaches often fall short in addressing these complexi-
ties, leading to subpar classification outcomes for psychiatric
disorders such as MDD and autism spectrum disorder (ASD).
To overcome the variability in data across different imaging cen-
ters, the inherent noise, and the nonlinear interactions, sophis-
ticated computational methods are imperative.

In recent years, the research on psychiatric disorder detec-
tion has increasingly focused on large-scale multisite fMRI
datasets, recognizing that large sample sizes are crucial for
deriving reliable brain-behavior relationship insights [8,9].
Deep learning methods provide the distinct advantage of auto-
matically extracting features and constructing end-to-end
classification models for mental disorders, particularly when
dealing with large sample sizes. However, despite the advance-
ments, there are still several technical hurdles that need to be
overcome. Convolutional neural networks (CNNs) are inferior
in capturing long-term dependencies and nonlocal correla-
tions in data [10]. Meanwhile, graph convolutional neural
networks (GCNs) are prone to over-smoothing as network
depth increases, which can result in the loss of distinct features
vital for effective classification [1]. Besides, creating an ideal
graph representation of functional brain connectivity is a
complex task, as it is highly susceptible to noise and can sig-
nificantly impact the performance of the model [2]. Recently,
the Transformer architecture has been increasingly applied to
psychiatric disorder diagnosis based on resting-state fMRI
(rs-fMRI) images, as demonstrated in studies by Dai et al.
[11]. While Transformers have become the go-to models for
various sequence-based tasks due to their ability to capture
long-range dependencies using self-attention mechanisms,
they suffer from significant limitations, especially in terms of
computational efficiency and scalability [12]. Transformers
typically exhibit quadratic time complexity relative to the
sequence length, which leads to substantial computational and
memory requirements, making them less practical for long-
term time-series data and large datasets like those involved in
fMRI studies.

In this paper, we propose Multiscale Contextual Mamba
(MSC-Mamba) for the detection of MDD and ASD based on
individual rs-fMRI data. By harnessing its capacity to reduce the
computational complexities associated with long-term depen-
dencies in time-series data [13], MSC-Mamba shows an advan-
tage in refining the selection of pertinent features for predictive
modeling within both global and local contexts across various
scales, making it particularly apt for the analysis of fMRI time-
series data. MSC-Mamba adeptly addresses both channel-mixing
and channel independence scenarios, enabling dynamic transi-
tions between capturing inter-region dependencies through
channel mixing and focusing on the unique temporal dynamics
of individual brain regions with channel independence. This
flexibility is crucial for comprehensive fMRI time-series analysis,
including optimizing feature extraction and enhancing pre-
dictive performance [14]. In our research, we utilized rs-fMRI
data from 1,642 participants, comprising 848 individuals
with MDD and 794 HC, sourced across 16 sites of the REST-
meta-MDD consortium [15]. Additionally, we included 1,022
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samples, with 502 individuals with ASD and 520 HC, collected
from 17 sites [16], to validate MSC-Mamba. We expect that
this method, by modeling complex, multidimensional data,
holds the potential to enhance clinical diagnostics for psychi-
atric disorders.

Methods

Data acquisition and preprocessing
We evaluate MSC-Mamba using 2 largely aggregated multisite
datasets.

1. The first dataset is the REST-meta-MDD database. rs-
fMRI and 3-dimensional T1-weighted structural MRI data
are gathered from all participants at each site. A consistent
image preprocessing procedure is applied using the Data
Processing Assistant for Resting-State fMRI (DPARSF) tool-
box. This procedure involves correcting for slice timing, head
motion, performing normalization, and removing confound-
ing variables, as outlined in earlier research [17-25].

We start with 1,300 MDD patients and 1,128 HC from the
REST-meta-MDD dataset. However, only 848 MDD patients
and 794 HC are included in the final analysis. The remain-
ing data are excluded based on several predefined criteria.
Participants older than 65 years or younger than 18 years are
excluded. Additionally, individuals with missing information
on age, sex, or education are removed. Low-quality images with
poor spatial normalization, excessive head motion, or inade-
quate coverage are also excluded. Furthermore, participants
whose ReHo (regional homogeneity) map showed a spatial
correlation of less than 0.6 with the group mean ReHo map are
excluded. Sites with fewer than 10 participants in either the
MDD or HC group are discarded. Data from site 25, which
mainly consisted of elderly patients with geriatric depression,
are also excluded. Finally, participants from site 4, which con-
tained duplicate datasets, are removed, as well as any images
with zero signals detected in the targeted atlas. As a result, 848
MDD patients and 794 HC are included in the final dataset for
analysis.

Brain regions for each participant are defined based on a
brain atlas. The atlases used in this study include the AAL-116
atlas [26] and the CC200 atlas [27,28], providing time-series
data for 116 and 200 regions, respectively. The BOLD signal
time series from voxels within each region of interest (ROI) are
extracted and averaged. The functional connectivity between
every pair of ROIs is assessed by calculating the Pearson cor-
relation coefficient of their corresponding time series. To nor-
malize the correlation estimates, Fisher’s z-transformation is
applied, resulting in a 160 X 160 functional connectivity matrix
for each individual. Demographic details of the dataset, includ-
ing the total number of participants, mean age (+standard
deviation), education level, Hamilton Depression Rating Scale
(HAMD) scores, illness duration, and number of episodes, are
provided in Tables 1 and 2.

2. The second dataset used in this paper is the ABIDE-I
database [29,30]. This dataset aggregates multimodal neuro-
imaging data, including T1-weighted structural brain images,
rs-fMRI scans, and phenotypic information, from 17 different
imaging sites worldwide. The diversity of imaging sites intro-
duces variability in acquisition protocols and participant demo-
graphics, making it an ideal dataset for evaluating methods
designed to handle heterogeneous multisite data. The original
ABIDE-I dataset comprises 505 individuals diagnosed with
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Table 1. Demographic characteristics for participants included in primary analysis for major depressive disorder and healthy controls. The

unit of duration is months.

MDD (N = 848) HC (N =794)
Min Max Mean SD Min Max Mean SD
Age 30-65 21.7-46.5 21.7-46.5 3.0-126 18-23 24-64 20.6-45.6 1.8-15.7
Education 3-9 15-21 9.7-14.2 1.5-4.5 5-12 15-23 9.9-15.9 16-4.8
HAMD 1-22 26-41 14.7-30.9 24-91 = = = =
Duration 0.2-9 12-480 5.3-90.1 4.2-102.5 = = = =
Episodes 1-1 1-10 1-24 0-19 - - - -

Table 2. Demographic information of the REST-meta-MDD
dataset

Number of Sex (male/
Site  Total MDD Age (avg + SD) female)
S-01 146 73 31.88 + 8.07 30/43
S-02 30 16 4175+11.13 7/9
S-04 4 18 31.67 +7.37 8/10
S-07 72 35 4194 +11.56 13/22
S-08 & 39 31.87 +£9.67 18/21
S-09 96 48 28.56 + 8.62 22/26
S-10 71 45 32.73 +£10.70 21/24
S-11 37 20 30.20 +9.03 10/10
S-13 36 20 32.65+8.39 9/11
S-14 93 61 30.13 +6.91 19/42
S-15 67 30 46.47 +12.40 15/15
S-17 82 41 2168 +2.97 14/27
S-19 49 18 34.94 +11.09 8/10
S-20 477 249 38.56 +11.82 83/166
S-21 144 79 34.14 +12.05 34/45
S22 38 18 33.83 +£9.55 7/11
S-23 45 22 26.23 +7.27 9/13
Total 1,642 848 3439 +11.54 304/528

ASD and 530 HC. For the purpose of this work, we perform
stringent pre-processing and matching to ensure data quality
and comparability. As a result, a total of 502 ASD patients
and 520 gender-matched HC are included in our evaluation.
This refined subset provides a balanced and robust founda-
tion for examining brain connectivity patterns associated
with ASD while addressing potential biases introduced by
imbalanced samples. The inclusion of rs-fMRI data enables
the exploration of functional connectivity and dynamic neu-
ral activity, which are critical for understanding the complex
neural mechanisms underlying ASD. Table 3 contains key
phenotypical information for ABIDE, including distribution
of ASD and HC by sex and age and the Autism Diagnostic
Observation Schedule (ADOS) score for ASD subjects.
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MSC-Mamba architecture

The architecture of MSC-Mamba is grounded in a state-space
model framework, optimized for processing BOLD time-series
data as shown in Fig. 1.

Multisite feature alignment and distribution adaptation
In multisite studies, fMRI data from different sites exhibit site-
specific variations due to differences in acquisition protocols,
scanner settings, and participant demographics. To ensure that
the model learns consistent representations across sites while
addressing these variations, we propose a class-specific feature
(i.e,, BOLD time-series data) alignment and distribution adap-
tation strategy.

To reduce site-specific biases and ensure that features are
aligned across sites for the same class, we compute the align-
ment loss separately for each class:

Lalign = 2 2

oSSy

2
2 (1)

Fsl,c_Fs

2>C

where c represents the class, and F; . and F, . are the features
for class ¢ from sites s; and s,, respectively. This ensures that the
features within the same class are aligned across sites, reducing
the risk of misalignment between different classes.

To address the statistical discrepancies in feature distri-
butions across sites, we apply maximum mean discrepancy
(MMD) for each class separately, aligning the marginal distribu-
tions of features within the same class across different sites:

Ladapt = Z Z MMD? <P31,C(F)’ PSZ,C(F)) (2)

c 51,8

where P (F) and P, (F) represent the feature distributions
for class ¢ from sites s; and s,, respectively. The empirical dis-
tribution of the features for site s and class ¢ is represented by
the following:

Po(F) == Y 5(f,~F) ()
i=1

where 6(-) is the discrete nature of the data. The sum is over all
the feature vectors f; corresponding to class ¢ at site s. These
loss functions are combined in a weighted sum manner to form
the total loss function:
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Table 3. Summary of ASD and HC different sites

ASD HC
Site Age, avg (SD) ADOS (SD) Count Age, avg (SD) Count
CALTECH 274 (10.3) 13.1(4.7) M15,F4 28.0(10.9) M14,F4
CcMU 26.4 (5.8) 131(3.1) M11,F3 26.8 (5.7) M10,F3
KKI 10.0(1.4) 12.5(3.6) M16,F 4 10.0(1.2) M20,F8
LEUVEN 17.8 (5.0) G M26,F 3 18.2(5.1) M29,F5
MAX MUN 26.1(14.9) 9.5(3.6) M?21,F3 24.6 (8.8) M27F1
NYU 147 (7.) 114 (4.1) M 65, F10 15.7 (6.2) M 74,F 26
OHSU 114 (2.2) 9.2(3.3) M12,FO 10.1(1.1) M14,FO
OLIN 16.5(34) 141 (4.1) M16,F3 16.7 (3.6) M13,F2
PITT 19.0(7.3) 124 (3.3) M25,F4 18.9 (6.6) M23,F4
SBL 35.0 (10.4) 9.2(1.7) M15,FO0 33.7 (6.6) M15,FO
SDSU 14.7 (1.8) 11.2 (4.3) M13,F1 14.2 (1.9) M16,F 6
STANFORD 10.0 (1.6) 117 (3.3) M15,F 4 10.0 (1.6) M16,F 4
TRINITY 16.8 (3.2) 10.8(2.9) M22,FO 171 (3.8) M25,F0
UCLA 13.0(2.5) 10.9(3.6) M48,F6 13.0(1.9) M38,F6
UM 13.2 (2.4) G M57 F9 14.8 (3.6) M 56, F 18
USM 23.5(8.3) 13.0(3.1) M46,FQ 21.3(8.4) M25,F0
YALE 12.7 (3.0) 11.0 (%) M20,F8 12.7 (2.8) M20,F8
M, male; F, female.
Missing data [29].
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Fig. 1. The architecture of the MSC-Mamba model, which processes resting-state fMRI data with residual state-space modeling and multiscale contextual features.
(A) represents the core MSC-Mamba pipeline, where fMRI signals are preprocessed and normalized through LayerNorm, then passed into the Multiscale State Space
Module (MSSM). Residual connections preserve the original information, while the output undergoes channel mixing and independence operations to enhance prediction
accuracy. (B) shows the MSSM, which integrates high- and low-resolution features [obtained from (C)] through convolutions, activation functions (SiLU). (C) highlights
multiscale contextual cues by convolutional filters of varying scales (e.g., 1x 3,1x5, and 1x 7) with SSM to capture rich hierarchical information.
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Ltotal = aLalign + ﬂLadapt (4)

where a and f are hyperparameters that balance the contribu-
tion of each loss term. The alignment loss L,j;, minimizes the
feature representation differences within the same class across
different imaging sites, promoting consistency and robustness
of the learned features. The adaptation loss L, g, further aligns
the feature distributions across sites, addressmg statistical dis-
crepancies and reducing site-specific biases. By performing
class-specific feature alignment and distribution adaptation,
we ensure that the learned representations are consistent,
robust, and comparable across different sites, thus improving
the model’s performance in multisite datasets.

State-space model in MSC-Mamba

State-space models represent the state of a system as a set of
variables evolving over time. These models are particularly
effective for capturing temporal dependencies and dynamic
behaviors in time-series data. The Mamba model integrates
SSMs to model the temporal dynamics of BOLD signals effi-
ciently, as illustrated in Fig. 2.

The continuous-time state-space model is defined as follows:

% = Ah(¢) + Bu(t), v(t) = Ch(t), (5)
where h(t) € RY is the state vector, u(t) € R is the input vec-
tor, v(t) € RP is the output vector, and A, B, and C are coefhi-
cient matrices that define the system dynamics. The state vector
h(t) captures the hidden states of the system, evolving over time
based on the input vector u(t). For discrete-time implementa-
tion, the continuous-time model is discretized as follows:

hk = th—l + Euk, Vi = Chk, (6)
where k denotes the discrete time steps, and A= exp(AtA),

= (AtA)”" (exp(AtA)—TI)B, with At being the time step
1nterva1.

hi—1 h:

| >

y
y

\ 4
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N
\ A 4

Ct
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! Discretize

At

Selection mechanism

Fig. 2. This diagram illustrates a state-space model with a selection mechanism,
where the components are involved in processing and discretizing input data. The
previous hidden state h;_; influences the current hidden state h; through an interaction
with the attention mechanism (represented by block A), which processes the input
signals. The project block (u;) and the selection mechanism (at the bottom) interact to
project and discretize the data, introducing a time delay factor At. The output states
B;, C;, and V; represent various components of the processed data, with feedback
mechanisms linking them together to form a dynamic system.
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Channel mixing and independence handling
MSC-Mamba framework incorporates adaptive mechanisms
for channel mixing and channel independence to address the
heterogeneous nature of fMRI time-series data. These opera-
tions are dynamically integrated through a gating mechanism,
enabling the model to balance inter-regional dependencies and
region-specific temporal dynamics.

Channel mixing aims to capture cross-regional functional
interactions by aggregating information across brain regions.

Given an input feature tensor X € RT*C, where T denotes the
temporal sequence length and C the number of channels (brain
regions), channel mixing is implemented as a linear projection
followed by nonlinear activation:

Xmix = (Wmlx X+bm1x)’ (7)

where W € RE¥C

mix € is a learnable weight matrix that models
pairwise interactions between channels, b, is the bias term,
and o(-) denotes the Sigmoid Linear Unit (SiLU) activation
function. This operation explicitly encodes global functional
connectivity patterns, such as those observed in the default
mode network or salience network, by allowing inter-channel
feature interactions.

To preserve region-specific temporal characteristics, channel-
independent processing is applied to each brain region individu-
ally. This is achieved through depthwise one-dimensional (1D)
convolutions that operate separately on each channel:

Xipg = Conle(X Wi, ) (8)

where W, 4 € R“*K represents channel-specific convolutional
kernels with a temporal receptive field of size K. Unlike stan-
dard convolutions, no parameter sharing occurs across chan-
nels, ensuring that the temporal dynamics of each region (e.g.,
oscillatory properties of the prefrontal cortex) are modeled
without interference from other regions.

A learnable gating mechanism dynamically combines channel-
mixed and channel-independent features to adaptively emphasize
global or local patterns based on input characteristics. The gating

weights G € RT*C are computed via sigmoid activation:
G= Sigmoid(Wg~X+bg), 9)

where W, and b, are learnable parameters. The final output
feature Xiut isa welghted combination of the 2 pathways:

Xout = GO Xy + (1-G) © Xjpy» (10)
where ® denotes element-wise multiplication. This gating
mechanism allows the model to prioritize channel mixing for
regions with strong functional couplings while retaining chan-

nel independence for regions exhibiting unique temporal
signatures.

Outer and inner Mambas

The outer Mambas operate on the high-resolution data XV,
capturing detailed temporal patterns. At the high-resolution
level, the model processes the BOLD time-series data with
minimal downsampling, retaining detailed temporal informa-
tion. This level is crucial for capturing fast, transient changes
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in brain activity. Each outer Mamba module processes the
input data through a series of linear projections, causal con-
volutions, and state-space transformations.

b =ZhY 4BV =ch®, (1)

where ug) is the input to the outer Mamba at time step k, and

hg{l) is the hidden state.

The inner Mambas operate on the low-resolution data X2,
capturing long-term trends and dependencies. Similar to the
outer Mambas, each inner Mamba module processes the input
data through linear projections, causal convolutions, and state-
space transformations.

@ _AKh® L 54@ @ _ cp®
h” =Ah" +Bu ", v” =Ch, (12)
where u'? is the input to the inner Mamba at time step k, and

hf) is the hidden state.

Integration of Mamba outputs. The outputs of the outer
and inner Mambas are integrated to form a comprehensive rep-
resentation of the input data, leveraging both high-resolution
and low-resolution contexts.

@
V:Concat(vgc ,V?), (13)

where Concat(-) denotes the concatenation function that com-
bines the outputs of the Mamba modules. MSC-Mamba mod-
ules are designed to capture long-term dependencies and
selective attention mechanisms within the BOLD time-series
data. Each module consists of the following key components:
o Linear projections. Linear transformations are applied to
the input data to project it into a higher-dimensional space,
facilitating the capture of complex temporal patterns.

. =Wix, + bk) (14)

where W and b, are learnable parameters.

o Causal convolutions. Convolutional layers with causal pad-
ding are employed to ensure that the temporal dependencies
are captured without introducing future information.

c = Conle(uk), (15)

where Conv1D(-) denotes the causal convolution operation.

« Selective attention mechanisms. The selective attention
mechanism in MSC-Mamba dynamically modulates temporal
feature contributions based on their diagnostic relevance. This
mechanism diverges from conventional self-attention by lever-
aging the implicit memory of state-space models, enabling
linear-time computation while maintaining global temporal
context. The process begins with query-key-value projections,
where input features v, € RT*Pare transformed via learnable
matrices W, , W, W, € R2*4 into lower-dimensional repre-
sentations (Qq, K, V), reducing computational overhead. Crucially,
instead of explicitly calculating pairwise attention scores, the
SSM’s hidden state k. implicitly encodes temporal dependen-
cies through its continuous-time dynamics. The attention
weight a; at each time step k is derived by normalizing the
contribution of the current state to the classification objective,
formulated as a; = Sigmoid(y - || Chy ||, + ), where y and 8
are learnable parameters, and C is the SSM’s output matrix.
This approach bypasses quadratic complexity by exploiting
the SSM’s sequential processing capabilities.
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The attention output a recalibrates features through a hybrid
operation: ¥ = a; © v + (1—a;) ® AvgPool(v; ), where ®
denotes element-wise multiplication. This design enables dual
functionality—emphasizing diagnostically critical temporal seg-
ments (e.g., transient connectivity fluctuations in MDD) while
suppressing noise-corrupted intervals. The mechanism inher-
ently enhances robustness to site-specific artifacts and motion-
related noise by attenuating attention to unreliable time points.

Theoretical advantages emerge from integrating attention
with SSM dynamics: MSC-Mamba achieves O(L) complexity
for sequence length L, outperforming Transformer-based
approaches [O(L?)] in scalability. The gating mechanism adap-
tively balances local detail preservation and global pattern
integration across multiscale features, ensuring optimal uti-
lization of both high-resolution transient signals and low-
resolution trend information. This synergy enables precise
identification of subtle psychopathology-related dynamics
while maintaining computational efficiency for large-scale
fMRI datasets.

o Output projections. The final output of each Mamba mod-
ule is obtained through a linear projection, mapping the high-
dimensional representation back to the original input space.

Classification layer. The integrated features are passed
through a classification layer to predict the presence of MDD.

¥ = Softmax (W, V+by), (16)

where W and b, are learnable parameters, and Softmax(-) is
the softmax activation function.

Training and optimization

The model is trained using a supervised learning approach with
the cross-entropy loss function, which is suitable for classifica-
tion tasks.

N

1 ~ ~
£=- 3 [yilog(7;) + (1-y)log(1-3,)],  (17)
i=1
where y; is the true label, N represents the number of samples,
and ¥, is the predicted probability of the ith sample. The Adam
optimizer [31] is employed for parameter updates, combining
adaptive learning rates and momentum to stabilize training.

The update rule is given by:

my
01 =0, —n— > (18)
Vi, +e
where 6 represents the model parameters, 7 is the learning rate,

m, and 7, are the bias-corrected first and second moment esti-
mates, and € is a small constant to prevent division by zero.

Experiments

Our experiments are carried out on an NVIDIA Tesla V100 with
32 GB memory. The learning rate within the network is set as
0.001, and the weight decay for regularization is 5e—4. For a fair
comparison with other state-of-the-art methods on the dataset,
we evaluate the performance of MSC-Mamba with different
methods. Eighty percent of the data are used for model training
and the remaining 20% are used as a validation set for testing.
We use the SiLU [32,33] as activation functions and normaliza-
tion layers (LayerNorm) [34]. The parameters of the model are
fine-tuned based on the results of the validation set, allowing us
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to obtain the best hyperparameters. To comprehensively assess
the performance of MSC-Mamba, 3 common metrics are used,
including accuracy, precision, and recall.

Results

Methods for comparison

We evaluate MSC-Mamba against several other methods to
ensure a fair comparison. These competing models are all
trained using similar learning schemes, as described below. (a)
IDCNN: A conventional deep learning approach, the 1D con-
volutional neural network (IDCNN) has been widely used in
computer vision tasks. In this experiment, we set the output
channels to 128, the kernel size to 2, and the stride to 1. To
prevent overfitting, batch normalization and max pooling are
applied. (b) LSTM: The long short-term memory (LSTM) net-
work is commonly employed in neuroimaging for sequence
data processing. In this experiment, the LSTM has a hidden
layer size of 100 and consists of a single hidden layer, with a
fully connected layer added afterward for MDD classification.
(c) IDCNN_LSTM: A combination of CNN and LSTM, which
are both widely used, is applied here. The CNN includes 2 lay-
ers: the first with 256 channels and the second with 64 channels.
The kernel size is set to 3, and the stride is fixed at 1. The LSTM
also uses a hidden layer size of 100 and one hidden layer. A
tully connected layer is added at the end for classification. (d)
ST-GCN: This model integrates graph convolutional networks
(GCNs) with temporal convolutional networks (TCNs), as pro-
posed by Azevedo et al. [35]. It learns spatial and temporal
features from rs-fMRI data for classification tasks. (¢) DKAN:
The diffusion kernel attention network (DKAN) [36], proposed
by Zhang et al,, replaces the original dot product attention in
Transformers with kernel attention to reduce parameters.
Additionally, it employs a diffusion mechanism for enhanced
classification performance in mental disorder prediction. (f)
Transformer-Encoder model: The Transformer-Encoder model
proposed by Dai et al. [11] simplifies the Transformer archi-
tecture by omitting the Decoder, reducing model complexity,
and eliminating the need for complex feature selection for
end-to-end classification. (g) SVM: A support vector machine
(SVM) is employed as a baseline classifier, known for its robust-
ness and effectiveness in classification tasks [37]. (h) NBS/
MDMR-SVM: NBS and MDMR are state-of-the-art connec-
tome-wide association studies (CWAS) techniques used to
identify key brain network features associated with diseases.
We apply a grid search to select the NBS threshold from 0.05
to 0.15, resulting in features of varying sizes for the analysis. (i)
GCN: A semi-supervised GCN is used, with feature selection
performed via recursive feature elimination. Each node in the
network represents a subject. (j) BrainNetCNN: BrainNetCNN
uses a convolutional approach to train the connectome matrix,
incorporating edge-to-edge (E2E), edge-to-node (E2N), and
node-to-graph (N2G) layers. The architecture includes 2 E2E
layers with 32 channels, one E2N layer with 64 output features,
and one N2G layer with 30 output features. A dropout rate of
0.5 is applied, following the original design. (k) BrainGNN: The
brain graph neural network (BrainGNN) introduces ROI-aware
graph convolutional and ROI-selection pooling layers to pre-
dict neurological biomarkers, outperforming traditional meth-
ods for fMRI analysis. () HGNN and DHGNN: These models
utilize hypergraph neural networks to capture complex asso-
ciations between brain parcellations. We follow the original
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structure, modifying the classifiers for graph-based classifica-
tion tasks. (m) HI-GCN and TE-HI-GCN: The hierarchical
graph convolutional network (HI-GCN) links graph topology
with participant similarity. We discard the transfer learning
component to make a fair comparison with other models. (n)
MDCN: The multivariate distance-based connectome network
(MDCN) [38] is a deep learning framework that combines
graph neural networks with multivariate distance matrices,
achieving superior results over traditional CWAS methods in
analyzing brain connectomes and classifying disorders like
ASD and ADHD.

Table 4 shows the performance of various methods for clas-
sifying MDD versus NC, highlighting differences in accuracy,
precision, and recall. MSC-Mamba achieves the highest accu-
racy at 69.91%, with a precision of 70.62% and a recall of
67.96%, indicating a well-balanced performance. LSTM, known
for handling sequential data, underperforms with 52.12% accu-
racy, 54.23% precision, and 66.75% recall, suggesting that it may
not fully exploit spatial relationships in the data. The hybrid
IDCNN_LSTM model improves performance to 56.42% accu-
racy, 56.90% precision, and a high recall of 70.58%, effectively
capturing both spatial and temporal features. The ST-GCN model,
despite its advanced capability in handling spatial-temporal
graphs, achieves lower results with 51.12% accuracy, possibly
due to the complexity of graph structure learning or dataset-
specific characteristics. The DKAN model, which introduces
a kernel attention mechanism and diffusion process, achieves
52.03% accuracy, 54.24% precision, and 62.15% recall, indicat-
ing that while innovative, it may not be as effective in this clas-
sification task. The Transformer-Encoder model performs
significantly better with 67.21% accuracy, 68.60% precision,
and 63.96% recall, showcasing its strength in capturing long-
range dependencies. Overall, MSC-Mamba stands out with its
superior balance of high accuracy and precision, demonstrating
robustness and reliability in classifying MDD. The slightly lower
recall of MSC-Mamba may be due to the model prioritizing
precision, resulting in more false negatives, which sacrifices
some recall in favor of reducing false positives.

Table 5 provides a detailed comparison of classification
performance on the Autism Brain Imaging Data Exchange
(ABIDE) dataset across multiple methods. The results dem-
onstrate that traditional methods like SVM and MDMR-
SVM show relatively lower performance, with accuracies of

Table 4. Results of different methods for MDD detection. Bold-
face indicates best performance.

Method Accuracy (%) Precision (%) Recall (%)
1DCNN 58.72 59.62 67.52
LSTM 52.12 54.23 66.75
1DCNN_LSTM 56.42 56.90 70.58
ST-GCN [35] 51.12 4754 60.24
DKAN [36] 52.03 54.24 62.15
Transformer- 67.21 68.60 63.96
Encoder model [11]

MSC-Mamba 69.91 70.62 67.96
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Table 5. Comparisons of the classification performance for ASD
detection. Boldface indicates best performance.

Method Accuracy (%) Precision (%) Recall (%)
SVM 65.56 60.99 70.00
NBS-SVM [34] 63.51 53.08 72.85
MDMR-SVM [35] 6743 62.59 72.11
GCN [35] 69.11 71.22 67.09
BrainGNN [39] 69.31 68.64 68.18
BrainNetCNN [40] 69.73 72.54 66.73
HGNN [41] 70.96 73.25 69.47
DHGNN [41] 7145 71.20 71.86
HI-GCN [42] 69.31 70.62 73.00
TE-HI-GCN [43] 71.08 71.92 72.38
MDCN [44] 7241 7173 73.16
MSC-Mamba 73.08 72.82 74.06

65.56% and 67.43%, respectively. Graph-based models such
as GCN, BrainGNN, and BrainNetCNN improve the results
slightly, with BrainNetCNN achieving an accuracy of 69.73%.
Among the advanced hierarchical and hybrid graph approaches,
HGNN and DHGNN stand out with accuracies of 70.96% and
71.45%, respectively. MSC-Mamba achieves the highest scores
across all metrics, with an accuracy of 73.08%, a precision of
72.82%, and a recall of 74.06%. This indicates a superior ability
to identify both true positives (high recall) and maintain high
prediction reliability (high precision). The results suggest that
the proposed method effectively captures the complex brain con-
nectivity patterns and inter-site variability inherent in the ABIDE
dataset, outperforming both traditional and state-of-the-art
graph-based methods. This demonstrates the robustness and
applicability of MSC-Mambah in handling heterogeneous and
multisite neuroimaging data.

Ablation study

In this section, we perform ablation experiments and verify the
effectiveness of MSC-Mamba on the REST-meta-MDD dataset
and ABIDE dataset as shown in Figs. 3 and 4. The ablation

0.80
0.70
0.60
0.50
0.40
0.30
0.20 =

Accuracy

Fig. 3. Results of the ablation study in MDD vs. HC classification.
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Precision

conditions include (a) only single-scale information (Mamba-ss)
referring to the exclusive use of high-resolution data (i.e., XV

in the “Outer and inner Mambas” section), (b) Mamba-rs (a
restricted structure without channel mixing and channel inde-
pendence), and (c) the original Mamba.

The experimental results on ablation condition (a) indicate
that the multiscale setting achieved the best classification per-
formance. This success can be attributed to the model’s ability
to capture features at different temporal resolutions, which is
crucial for identifying patterns in complex time-series data. By
using multiple convolutional layers with varying kernel sizes,
the model can effectively learn both fine-grained and coarse-
grained temporal features. This comprehensive feature extrac-
tion likely enhances the model’s ability to distinguish between
MDD/ASD and HC more accurately. This comparison under-
scores the importance that fuses multiscale feature extraction
with other model enhancements for optimal performance.

The experimental results of the ablation condition (b) show
the effectiveness of channel mixing and channel independence.
It helps stabilize training and reduce overfitting, especially for
the smaller dataset. The experimental results of ablation condi-
tion (c) indicate that the original Mamba model alone does not
perform well in this study. It fails to improve the model’s perfor-
mance. This lack of improvement suggests that the baseline
Mamba model struggles to effectively leverage the intrinsic vari-
ability of the dataset. These results underscore the limitations of
the original Mamba model and the necessity of enhancements
to better adapt it to the complexity of the data. From Figs. 3 and
4, we also see that MSC-Mamba (as shown in Fig. 1) with mul-
tiscale information and residual connections achieves relatively
better performance in most cases. This further demonstrates the
effectiveness of fusing multiscale representation with residual
connections at the intermediate feature level.

Identifying brain regions affected by MDD and ASD

Figure 5 illustrates related regions, visualized from multiple
perspectives (left lateral, right lateral, superior, and posterior
views). The red-highlighted areas correspond to specific regions
of interest defined by the AAL-116 atlas, a widely used brain
parcellation scheme that divides the brain into 116 anatomical
regions for standardized neuroimaging analysis. We find that
the highlighted regions are primarily associated with emotional
regulation, cognitive control, and memory processes, which are
often disrupted in MDD. These include the prefrontal cortex,

Mamba-ss Mamba-rs Mamba Ours

Recall
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Fig. 4. Results of the ablation study in ASD vs. HC classification.

Precision

7R

Recall

L

Fig. 5. Brain regions identified using the AAL-116 atlas, highlighting areas associated with MDD.

anterior cingulate cortex, hippocampus, and amygdala, aligning
with previous studies that emphasize the role of these regions
in the pathophysiology of psychiatric disorders.

Figure 6 illustrates brain regions associated with ASD based
on the Schaefer-100 atlas, a parcellation scheme that divides
the brain into 100 functional regions of interest. The regions
highlighted in blue represent areas where significant differences
have been obtained in individuals with ASD compared to neu-
rotypical individuals. These regions are visualized from differ-
ent perspectives, offering a comprehensive understanding of
their spatial distribution. We find that these highlighted regions
are primarily associated with social cognition, sensory process-
ing, and repetitive behaviors. Specifically, the fusiform gyrus,
superior temporal sulcus, and insula show reduced activity or
connectivity, contributing to difficulties in interpreting social

e

cues and sensory integration. Additionally, hyperconnectivity
in the default mode network, including the medial prefrontal
cortex and posterior cingulate cortex, suggests altered self-
referential processing and reduced engagement with external
stimuli, consistent with core symptoms of ASD.

Discussion

This paper presents a novel state-space model-based framework
for classifying MDD and ASD using rs-fMRI data collected
from multiple imaging sites. The results demonstrate the
robustness and effectiveness of MSC-Mamba in handling the
complexities of neuroimaging data, including long-term tem-
poral dependencies, high-dimensional feature spaces, and inter-
site variability. Compared to traditional and state-of-the-art

R

Fig. 6. Brain regions identified using the Schaefer-100 atlas, highlighting areas associated with ASD.
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methods, MSC-Mamba achieves superior performance across
key metrics, including accuracy, precision, and recall, for both
the REST-meta-MDD and ABIDE datasets. These findings high-
light the potential of the model to address critical challenges
in the field of neuroimaging-based diagnostics, paving the way
for its clinical and research applications.

MSC-Mambea is based on state-space models to address limi-
tations commonly observed in traditional graph-based or deep
learning methods. One key strength of this approach lies in its
ability to capture long-term temporal dependencies in fMRI
time-series data while maintaining computational efficiency.
This contrasts with GCNs, which are limited by their focus on
local neighborhood information and susceptibility to over-
smoothing in deeper architectures. Similarly, while Transformer-
based models have been widely adopted for sequence modeling
tasks, their quadratic time complexity with respect to sequence
length makes them computationally prohibitive for large-scale
datasets like those used in this study. By comparison, the linear
scalability of the state-space model ensures that MSC-Mamba
remains efficient and applicable even for multisite datasets with
high-dimensional input features.

The integration of multiscale temporal modeling within the
framework further enhances its ability to capture both local
and global neural dynamics. By processing data at multiple
temporal resolutions, the model effectively identifies short-
term fluctuations as well as long-term trends in brain activity.
This multiscale approach is particularly valuable for under-
standing the complex patterns associated with psychiatric dis-
orders like MDD and ASD, which often involve abnormalities
at multiple levels of brain function. Additionally, the dynamic
handling of channel mixing and channel independence ensures
that the model can flexibly adapt to the varying characteristics
of different brain regions, capturing both inter-region depen-
dencies and region-specific temporal dynamics.

Another critical strength of MSC-Mamba is its ability to
address the heterogeneity inherent in multisite neuroimaging
data. Variability in imaging protocols, scanner settings, and par-
ticipant demographics often introduces site-specific biases that
can confound analysis and reduce model performance. MSC-
Mamba mitigates these challenges through feature alignment
and distribution adaptation mechanisms. By aligning feature
representations across imaging sites and reducing discrepancies
in both marginal and conditional data distributions, the model
ensures consistent performance across diverse datasets. This
adaptability makes the framework particularly well-suited for
large-scale, multisite studies, where data heterogeneity is a com-
mon challenge.

Our contributions are summarized as follows: (a) Efficient
long-term dependency modeling: We propose a state-of-the-art
state-space model architecture that efficiently captures long-
term dependencies in multivariate time-series data. This inno-
vation addresses the inherent challenges of modeling complex
temporal dynamics in fMRI data. Unlike traditional approaches
such as Transformers, which suffer from quadratic time complex-
ity and high computational demands, MSC-Mamba achieves
linear scalability, making it both computationally efficient and
practical for large-scale applications. (b) Enhanced classifica-
tion for MDD and ASD: MSC-Mamba is based on the strengths
of state-space frameworks to accurately classify MDD and ASD
by capturing intricate patterns in brain activity. This approach
effectively models the nuanced temporal relationships in fMRI
signals, enabling robust identification of diagnostic features.
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The ability ensures that the model is well-suited to handling
the complex temporal dynamics characteristic of psychiatric
disorders. (c) Robust multisite generalization: MSC-Mamba
is designed to accommodate the variability and heterogeneity
present in multisite imaging data. By incorporating mecha-
nisms to address differences in acquisition protocols, scanning
conditions, and participant populations, MSC-Mamba ensures
consistent and reliable performance across diverse imaging
sites. This adaptability not only enhances the model’s gener-
alizability but also supports its potential for real-world clini-
cal deployment in large-scale studies that require integration
of data from multiple sources.

Despite its promising results, the study has limitations that
warrant further investigation. First, while the model demon-
strates robust performance for MDD and ASD classification,
its applicability to other psychiatric or neurological disorders
remains unexplored. Expanding the model to additional datasets
and conditions could provide further insights into its generaliz-
ability and utility. Second, while the framework incorporates
feature alignment and distribution adaptation mechanisms, inter-
site variability in imaging protocols may still introduce subtle
biases. Future work could focus on refining these mechanisms,
potentially investigating more advanced techniques such as
domain-invariant feature learning or adversarial alignment.

Conclusion

This paper presents MSC-Mamba, a state-space model-based
framework designed to improve the classification of psychiatric
disorders using neuroimaging data, specifically rs-fMRI. The
primary challenge in neuroimaging-based psychiatric disorder
classification is dealing with the inherent complexity of high-
dimensional fMRI data, including long-term temporal depen-
dencies, intersite variability, and noise across multiple imaging
centers. MSC-Mamba addresses these challenges by incorporat-
ing a multiscale contextual approach, enabling the model to
capture both short-term and long-term dynamic patterns in the
brain’s functional networks. Additionally, the model adapts to
the diverse characteristics of data collected from different sites,
effectively mitigating site-specific biases that are commonly
observed in large-scale multisite neuroimaging studies. The
results of this study demonstrate that MSC-Mamba is capable
of achieving state-of-the-art performance in the classification
of both MDD and ASD across large and heterogeneous datasets.
The model’s flexibility in handling multiscale features and its
ability to integrate both global and local brain connectivity pat-
terns contribute to its robustness and accuracy in detecting
psychiatric conditions. Furthermore, the performance of MSC-
Mambea indicates its potential for clinical applications, where
reliable, data-driven diagnostic tools are essential for improving
the accuracy and efliciency of psychiatric disorder detection.
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