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Background: Major depressive disorder (MDD) and autism spectrum disorder (ASD) are complex and 
heterogeneous neuropsychiatric disorders with overlapping symptoms, presenting remarkable challenges 
for accurate diagnosis. Leveraging functional neuroimaging data offers an opportunity to develop more 
robust, data-driven approach for psychiatric disorder detection. However, existing methods often struggle 
to capture the long-term dependencies and dynamic patterns inherent in such data, particularly across 
diverse imaging sites. Methods: We propose Multiscale Contextual Mamba (MSC-Mamba), a Mamba-based 
model designed for capturing long-term dependencies in multivariate time-series data while maintaining 
linear scalability, allowing us to account for long-range interactions and subtle dynamic patterns within 
the brain’s functional networks. One of the main advantages of MSC-Mamba is its ability to leverage the 
distinct characteristics of time-series data, allowing it to generate meaningful contextual information 
across various scales. This method effectively addresses both channel-mixing and channel-independence 
scenarios, facilitating the selection of relevant features for prediction by considering both global and local 
contexts at multiple scales. Results: Two large-scale multisite functional magnetic resonance imaging 
datasets, including REST-meta-MDD (n = 1,642) and Autism Brain Imaging Data Exchange (ABIDE) (n = 
1,022), were used to validate the performance of our proposed approach. MSC-Mamba has achieved state-
of-the-art performance, with an accuracy of 69.91% for MDD detection and 73.08% for ASD detection. The 
results demonstrate the model’s robust generalization across imaging sites and its sensitivity to intricate 
brain network dynamics. Conclusions: This paper demonstrates the potential of state-space models in 
advancing psychiatric neuroimaging research. The findings suggest that such models can significantly 
enhance detection accuracy for MDD and ASD, pointing toward more reliable, data-driven diagnostic tools 
in psychiatric disorder detection.

Introduction

   Psychiatric disorders constitute a predominant source of sub-
stantial social and economic strain on healthcare systems glob-
ally, severely impairing the welfare of individuals afflicted [  1 ]. 
Despite extensive research over several decades, the identifica-
tion of unified or definitive biomarkers within the field of psy-
chiatry remains elusive [  2 ]. This uncertainty may stem from 
the fact that psychiatric diagnoses are predominantly anchored 
in clinical manifestations and signs, rather than on the underly-
ing biological substrates. For instance, the diagnosis of major 
depressive disorder (MDD) is typically confirmed when patients 

exhibit a minimum of 5 out of 9 specific clinical symptoms, 
including but not limited to a depressed mood, anhedonia, and 
cognitive dysfunctions [  3 ,  4 ]. This approach results in signifi-
cant clinical heterogeneity among patients who share the same 
diagnostic label [  5 ]. Such heterogeneity has impeded research-
ers’ ability to identify reliable biomarkers through conventional 
case–control methodologies, which compare patients with the 
same diagnosis to healthy controls (HC) [  6 ]. Most critically, 
this has impeded advancements in the efficacy and outcomes 
of treatments for psychiatric disorders [  7 ].

   Functional magnetic resonance imaging (fMRI) has proven 
effective in studying the neurobiological substrates of psychiatric 
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disorders. The blood-oxygen-level-dependent (BOLD) time-
series data derived from fMRI offer critical insights into the func-
tional connectivity and the dynamic nature of brain networks. 
However, the analysis of this high-dimensional data presents 
significant challenges, particularly in terms of capturing both 
local and global temporal dependencies. Traditional machine 
learning approaches often fall short in addressing these complexi-
ties, leading to subpar classification outcomes for psychiatric 
disorders such as MDD and autism spectrum disorder (ASD). 
To overcome the variability in data across different imaging cen-
ters, the inherent noise, and the nonlinear interactions, sophis-
ticated computational methods are imperative.

   In recent years, the research on psychiatric disorder detec-
tion has increasingly focused on large-scale multisite fMRI 
datasets, recognizing that large sample sizes are crucial for 
deriving reliable brain–behavior relationship insights [  8 ,  9 ]. 
Deep learning methods provide the distinct advantage of auto-
matically extracting features and constructing end-to-end 
classification models for mental disorders, particularly when 
dealing with large sample sizes. However, despite the advance-
ments, there are still several technical hurdles that need to be 
overcome. Convolutional neural networks (CNNs) are inferior 
in capturing long-term dependencies and nonlocal correla-
tions in data [  10 ]. Meanwhile, graph convolutional neural 
networks (GCNs) are prone to over-smoothing as network 
depth increases, which can result in the loss of distinct features 
vital for effective classification [ 1 ]. Besides, creating an ideal 
graph representation of functional brain connectivity is a 
complex task, as it is highly susceptible to noise and can sig-
nificantly impact the performance of the model [ 2 ]. Recently, 
the Transformer architecture has been increasingly applied to 
psychiatric disorder diagnosis based on resting-state fMRI 
(rs-fMRI) images, as demonstrated in studies by Dai et al. 
[  11 ]. While Transformers have become the go-to models for 
various sequence-based tasks due to their ability to capture 
long-range dependencies using self-attention mechanisms, 
they suffer from significant limitations, especially in terms of 
computational efficiency and scalability [  12 ]. Transformers 
typically exhibit quadratic time complexity relative to the 
sequence length, which leads to substantial computational and 
memory requirements, making them less practical for long-
term time-series data and large datasets like those involved in 
fMRI studies.

   In this paper, we propose Multiscale Contextual Mamba 
(MSC-Mamba) for the detection of MDD and ASD based on 
individual rs-fMRI data. By harnessing its capacity to reduce the 
computational complexities associated with long-term depen-
dencies in time-series data [  13 ], MSC-Mamba shows an advan-
tage in refining the selection of pertinent features for predictive 
modeling within both global and local contexts across various 
scales, making it particularly apt for the analysis of fMRI time-
series data. MSC-Mamba adeptly addresses both channel-mixing 
and channel independence scenarios, enabling dynamic transi-
tions between capturing inter-region dependencies through 
channel mixing and focusing on the unique temporal dynamics 
of individual brain regions with channel independence. This 
flexibility is crucial for comprehensive fMRI time-series analysis, 
including optimizing feature extraction and enhancing pre-
dictive performance [  14 ]. In our research, we utilized rs-fMRI 
data from 1,642 participants, comprising 848 individuals 
with MDD and 794 HC, sourced across 16 sites of the REST-
meta-MDD consortium [  15 ]. Additionally, we included 1,022 

samples, with 502 individuals with ASD and 520 HC, collected 
from 17 sites [  16 ], to validate MSC-Mamba. We expect that 
this method, by modeling complex, multidimensional data, 
holds the potential to enhance clinical diagnostics for psychi-
atric disorders.   

Methods

Data acquisition and preprocessing
   We evaluate MSC-Mamba using 2 largely aggregated multisite 
datasets.

   1. The first dataset is the REST-meta-MDD database. rs-
fMRI and 3-dimensional T1-weighted structural MRI data 
are gathered from all participants at each site. A consistent 
image preprocessing procedure is applied using the Data 
Processing Assistant for Resting-State fMRI (DPARSF) tool-
box. This procedure involves correcting for slice timing, head 
motion, performing normalization, and removing confound-
ing variables, as outlined in earlier research [  17 –  25 ].

   We start with 1,300 MDD patients and 1,128 HC from the 
REST-meta-MDD dataset. However, only 848 MDD patients 
and 794 HC are included in the final analysis. The remain-
ing data are excluded based on several predefined criteria. 
Participants older than 65 years or younger than 18 years are 
excluded. Additionally, individuals with missing information 
on age, sex, or education are removed. Low-quality images with 
poor spatial normalization, excessive head motion, or inade-
quate coverage are also excluded. Furthermore, participants 
whose ReHo (regional homogeneity) map showed a spatial 
correlation of less than 0.6 with the group mean ReHo map are 
excluded. Sites with fewer than 10 participants in either the 
MDD or HC group are discarded. Data from site 25, which 
mainly consisted of elderly patients with geriatric depression, 
are also excluded. Finally, participants from site 4, which con-
tained duplicate datasets, are removed, as well as any images 
with zero signals detected in the targeted atlas. As a result, 848 
MDD patients and 794 HC are included in the final dataset for 
analysis.

   Brain regions for each participant are defined based on a 
brain atlas. The atlases used in this study include the AAL-116 
atlas [  26 ] and the CC200 atlas [  27 ,  28 ], providing time-series 
data for 116 and 200 regions, respectively. The BOLD signal 
time series from voxels within each region of interest (ROI) are 
extracted and averaged. The functional connectivity between 
every pair of ROIs is assessed by calculating the Pearson cor-
relation coefficient of their corresponding time series. To nor-
malize the correlation estimates, Fisher’s z-transformation is 
applied, resulting in a 160 × 160 functional connectivity matrix 
for each individual. Demographic details of the dataset, includ-
ing the total number of participants, mean age (±standard 
deviation), education level, Hamilton Depression Rating Scale 
(HAMD) scores, illness duration, and number of episodes, are 
provided in Tables  1  and  2 .  

   2. The second dataset used in this paper is the ABIDE-I 
database [  29 ,  30 ]. This dataset aggregates multimodal neuro-
imaging data, including T1-weighted structural brain images, 
rs-fMRI scans, and phenotypic information, from 17 different 
imaging sites worldwide. The diversity of imaging sites intro-
duces variability in acquisition protocols and participant demo-
graphics, making it an ideal dataset for evaluating methods 
designed to handle heterogeneous multisite data. The original 
ABIDE-I dataset comprises 505 individuals diagnosed with 
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ASD and 530 HC. For the purpose of this work, we perform 
stringent pre-processing and matching to ensure data quality 
and comparability. As a result, a total of 502 ASD patients 
and 520 gender-matched HC are included in our evaluation. 
This refined subset provides a balanced and robust founda-
tion for examining brain connectivity patterns associated 
with ASD while addressing potential biases introduced by 
imbalanced samples. The inclusion of rs-fMRI data enables 
the exploration of functional connectivity and dynamic neu-
ral activity, which are critical for understanding the complex 
neural mechanisms underlying ASD. Table  3  contains key 
phenotypical information for ABIDE, including distribution 
of ASD and HC by sex and age and the Autism Diagnostic 
Observation Schedule (ADOS) score for ASD subjects.   

MSC-Mamba architecture
   The architecture of MSC-Mamba is grounded in a state-space 
model framework, optimized for processing BOLD time-series 
data as shown in Fig.  1 .          

Multisite feature alignment and distribution adaptation
   In multisite studies, fMRI data from different sites exhibit site-
specific variations due to differences in acquisition protocols, 
scanner settings, and participant demographics. To ensure that 
the model learns consistent representations across sites while 
addressing these variations, we propose a class-specific feature 
(i.e., BOLD time-series data) alignment and distribution adap-
tation strategy.

   To reduce site-specific biases and ensure that features are 
aligned across sites for the same class, we compute the align-
ment loss separately for each class:

﻿﻿  

where c represents the class, and  Fs1,c    and  Fs2,c    are the features 
for class c from sites  s1    and  s2   , respectively. This ensures that the 
features within the same class are aligned across sites, reducing 
the risk of misalignment between different classes.

   To address the statistical discrepancies in feature distri-
butions across sites, we apply maximum mean discrepancy 
(MMD) for each class separately, aligning the marginal distribu-
tions of features within the same class across different sites:

﻿﻿  

where  Ps1,c(F)    and  Ps2,c(F)    represent the feature distributions 
for class c from sites  s1    and  s2   , respectively. The empirical dis-
tribution of the features for site s and class c is represented by 
the following:
﻿﻿  

where  �(⋅)    is the discrete nature of the data. The sum is over all 
the feature vectors  fi    corresponding to class c at site s. These 
loss functions are combined in a weighted sum manner to form 
the total loss function:

(1)Lalign =
∑

c

∑

s1,s2

‖‖‖
Fs1,c−Fs2,c

‖‖‖
2

2

(2)Ladapt =
∑

c

∑

s1,s2

MMD2
(
Ps1,c(F),Ps2,c(F)

)

(3)Ps,c(F) =
1

n

n∑

i=1

�
(
fi−F

)

Table 1. Demographic characteristics for participants included in primary analysis for major depressive disorder and healthy controls. The 
unit of duration is months.

MDD (N = 848) HC (N = 794)

Min Max Mean SD Min Max Mean SD

 Age 30–65 21.7–46.5 21.7–46.5 3.0–12.6 18–23 24–64 20.6–45.6 1.8–15.7

 Education 3–9 15–21 9.7–14.2 1.5–4.5 5–12 15–23 9.9–15.9 1.6–4.8

 HAMD 1–22 26–41 14.7–30.9 2.4–9.1 – – – –

 Duration 0.2–9 12–480 5.3–90.1 4.2–102.5 – – – –

 Episodes 1–1 1–10 1–2.4 0–1.9 – – – –

Table 2. Demographic information of the REST-meta-MDD 
dataset

Site Total
Number of 

MDD Age (avg ± SD)
Sex (male/

female)

 S-01 146 73 31.88 ± 8.07 30/43

 S-02 30 16 41.75 ± 11.13 7/9

 S-04 41 18 31.67 ± 7.37 8/10

 S-07 72 35 41.94 ± 11.56 13/22

 S-08 87 39 31.87 ± 9.67 18/21

 S-09 96 48 28.56 ± 8.62 22/26

 S-10 71 45 32.73 ± 10.70 21/24

 S-11 37 20 30.20 ± 9.03 10/10

 S-13 36 20 32.65 ± 8.39 9/11

 S-14 93 61 30.13 ± 6.91 19/42

 S-15 67 30 46.47 ± 12.40 15/15

 S-17 82 41 21.68 ± 2.97 14/27

 S-19 49 18 34.94 ± 11.09 8/10

 S-20 477 249 38.56 ± 11.82 83/166

 S-21 144 79 34.14 ± 12.05 34/45

 S-22 38 18 33.83 ± 9.55 7/11

 S-23 45 22 26.23 ± 7.27 9/13

 Total 1,642 848 34.39 ± 11.54 304/528
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Table 3. Summary of ASD and HC different sites

Site

ASD HC

Age, avg (SD) ADOS (SD) Count Age, avg (SD) Count

 CALTECH 27.4 (10.3) 13.1 (4.7) M 15, F 4 28.0 (10.9) M 14, F 4

 CMU 26.4 (5.8) 13.1 (3.1) M 11, F 3 26.8 (5.7) M 10, F 3

 KKI 10.0 (1.4) 12.5 (3.6) M 16, F 4 10.0 (1.2) M 20, F 8

 LEUVEN 17.8 (5.0) a (a) M 26, F 3 18.2 (5.1) M 29, F 5

 MAX MUN 26.1 (14.9) 9.5 (3.6) M 21, F 3 24.6 (8.8) M 27, F 1

 NYU 14.7 (7.1) 11.4 (4.1) M 65, F 10 15.7 (6.2) M 74, F 26

 OHSU 11.4 (2.2) 9.2 (3.3) M 12, F 0 10.1 (1.1) M 14, F 0

 OLIN 16.5 (3.4) 14.1 (4.1) M 16, F 3 16.7 (3.6) M 13, F 2

 PITT 19.0 (7.3) 12.4 (3.3) M 25, F 4 18.9 (6.6) M 23, F 4

 SBL 35.0 (10.4) 9.2 (1.7) M 15, F 0 33.7 (6.6) M 15, F 0

 SDSU 14.7 (1.8) 11.2 (4.3) M 13, F 1 14.2 (1.9) M 16, F 6

 STANFORD 10.0 (1.6) 11.7 (3.3) M 15, F 4 10.0 (1.6) M 16, F 4

 TRINITY 16.8 (3.2) 10.8 (2.9) M 22, F 0 17.1 (3.8) M 25, F 0

 UCLA 13.0 (2.5) 10.9 (3.6) M 48, F 6 13.0 (1.9) M 38, F 6

 UM 13.2 (2.4) a (a) M 57, F 9 14.8 (3.6) M 56, F 18

 USM 23.5 (8.3) 13.0 (3.1) M 46, F 0 21.3 (8.4) M 25, F 0

 YALE 12.7 (3.0) 11.0 (a) M 20, F 8 12.7 (2.8) M 20, F 8

M, male; F, female.
aMissing data [29].

Fig. 1. The architecture of the MSC-Mamba model, which processes resting-state fMRI data with residual state-space modeling and multiscale contextual features. 
(A) represents the core MSC-Mamba pipeline, where fMRI signals are preprocessed and normalized through LayerNorm, then passed into the Multiscale State Space 
Module (MSSM). Residual connections preserve the original information, while the output undergoes channel mixing and independence operations to enhance prediction 
accuracy. (B) shows the MSSM, which integrates high- and low-resolution features [obtained from (C)] through convolutions, activation functions (SiLU). (C) highlights 
multiscale contextual cues by convolutional filters of varying scales (e.g., 1 × 3, 1 × 5, and 1 × 7) with SSM to capture rich hierarchical information.
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﻿﻿  

where  �    and  �    are hyperparameters that balance the contribu-
tion of each loss term. The alignment loss  Lalign    minimizes the 
feature representation differences within the same class across 
different imaging sites, promoting consistency and robustness 
of the learned features. The adaptation loss  Ladapt    further aligns 
the feature distributions across sites, addressing statistical dis-
crepancies and reducing site-specific biases. By performing 
class-specific feature alignment and distribution adaptation, 
we ensure that the learned representations are consistent, 
robust, and comparable across different sites, thus improving 
the model’s performance in multisite datasets.   

State-space model in MSC-Mamba
   State-space models represent the state of a system as a set of 
variables evolving over time. These models are particularly 
effective for capturing temporal dependencies and dynamic 
behaviors in time-series data. The Mamba model integrates 
SSMs to model the temporal dynamics of BOLD signals effi-
ciently, as illustrated in Fig.  2 .        

   The continuous-time state-space model is defined as follows:
﻿﻿  

where  h(t) ∈ ℝ
N    is the state vector,  u(t) ∈ ℝ

D    is the input vec-
tor,  v(t) ∈ ℝ

D    is the output vector, and  A   ,  B   , and  C    are coeffi-
cient matrices that define the system dynamics. The state vector 
﻿h(t)    captures the hidden states of the system, evolving over time 
based on the input vector  u(t)   . For discrete-time implementa-
tion, the continuous-time model is discretized as follows:
﻿﻿  

where k denotes the discrete time steps, and  A = exp(ΔtA)   , 
﻿B = (ΔtA)−1

(
exp(ΔtA)−I

)
B   , with  Δt    being the time step 

interval.   

Channel mixing and independence handling
   MSC-Mamba framework incorporates adaptive mechanisms 
for channel mixing and channel independence to address the 
heterogeneous nature of fMRI time-series data. These opera-
tions are dynamically integrated through a gating mechanism, 
enabling the model to balance inter-regional dependencies and 
region-specific temporal dynamics.

   Channel mixing aims to capture cross-regional functional 
interactions by aggregating information across brain regions. 
Given an input feature tensor  X ∈ ℝ

T×C   , where  T    denotes the 
temporal sequence length and  C    the number of channels (brain 
regions), channel mixing is implemented as a linear projection 
followed by nonlinear activation:

﻿﻿  

where  Wmix ∈ ℝ
C×C    is a learnable weight matrix that models 

pairwise interactions between channels,  bmix    is the bias term, 
and  �(⋅)    denotes the Sigmoid Linear Unit (SiLU) activation 
function. This operation explicitly encodes global functional 
connectivity patterns, such as those observed in the default 
mode network or salience network, by allowing inter-channel 
feature interactions.

   To preserve region-specific temporal characteristics, channel-
independent processing is applied to each brain region individu-
ally. This is achieved through depthwise one-dimensional (1D) 
convolutions that operate separately on each channel:

﻿﻿  

where  Wind ∈ ℝ
C×K    represents channel-specific convolutional 

kernels with a temporal receptive field of size  K   . Unlike stan-
dard convolutions, no parameter sharing occurs across chan-
nels, ensuring that the temporal dynamics of each region (e.g., 
oscillatory properties of the prefrontal cortex) are modeled 
without interference from other regions.

   A learnable gating mechanism dynamically combines channel-
mixed and channel-independent features to adaptively emphasize 
global or local patterns based on input characteristics. The gating 
weights  G ∈ ℝ

T×C    are computed via sigmoid activation:
﻿﻿  

where  Wg    and  bg    are learnable parameters. The final output 
feature  Xout    is a weighted combination of the 2 pathways:
﻿﻿  

where  ⊙    denotes element-wise multiplication. This gating 
mechanism allows the model to prioritize channel mixing for 
regions with strong functional couplings while retaining chan-
nel independence for regions exhibiting unique temporal 
signatures.   

Outer and inner Mambas
   The outer Mambas operate on the high-resolution data  X(1)   , 
capturing detailed temporal patterns. At the high-resolution 
level, the model processes the BOLD time-series data with 
minimal downsampling, retaining detailed temporal informa-
tion. This level is crucial for capturing fast, transient changes 

(4)Ltotal = �Lalign + �Ladapt

(5)
dh(t)

dt
= Ah(t) + Bu(t), v(t) = Ch(t),

(6)hk = Ahk−1 + Buk, vk = Chk,

(7)Xmix = �
(
Wmix ⋅X+bmix

)
,

(8)Xind = Conv1D
(
X;Wind

)
,

(9)G = Sigmoid
(
Wg ⋅X+bg

)
,

(10)Xout = G ⊙ Xmix + (1−G)⊙ Xind,

Fig. 2. This diagram illustrates a state-space model with a selection mechanism, 
where the components are involved in processing and discretizing input data. The 
previous hidden state ht−1 influences the current hidden state ht through an interaction 
with the attention mechanism (represented by block A), which processes the input 
signals. The project block (ut) and the selection mechanism (at the bottom) interact to 
project and discretize the data, introducing a time delay factor Δt. The output states 
Bt, Ct, and Vt represent various components of the processed data, with feedback 
mechanisms linking them together to form a dynamic system.
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in brain activity. Each outer Mamba module processes the 
input data through a series of linear projections, causal con-
volutions, and state-space transformations.
﻿﻿  

where  u(1)
k

    is the input to the outer Mamba at time step k, and 
﻿h(1)
k

    is the hidden state.
   The inner Mambas operate on the low-resolution data  X(2)   , 

capturing long-term trends and dependencies. Similar to the 
outer Mambas, each inner Mamba module processes the input 
data through linear projections, causal convolutions, and state-
space transformations.

﻿﻿  

where  u(2)
k

    is the input to the inner Mamba at time step k, and 
﻿h(2)
k

    is the hidden state.
   Integration of Mamba outputs. The outputs of the outer 

and inner Mambas are integrated to form a comprehensive rep-
resentation of the input data, leveraging both high-resolution 
and low-resolution contexts.

﻿﻿  

where  Concat(⋅)    denotes the concatenation function that com-
bines the outputs of the Mamba modules. MSC-Mamba mod-
ules are designed to capture long-term dependencies and 
selective attention mechanisms within the BOLD time-series 
data. Each module consists of the following key components:

   • Linear projections. Linear transformations are applied to 
the input data to project it into a higher-dimensional space, 
facilitating the capture of complex temporal patterns.

﻿﻿  

where  Wk    and  bk    are learnable parameters.
   • Causal convolutions. Convolutional layers with causal pad-

ding are employed to ensure that the temporal dependencies 
are captured without introducing future information.

﻿﻿   

   where  Conv1D(⋅)    denotes the causal convolution operation.
   • Selective attention mechanisms. The selective attention 

mechanism in MSC-Mamba dynamically modulates temporal 
feature contributions based on their diagnostic relevance. This 
mechanism diverges from conventional self-attention by lever-
aging the implicit memory of state-space models, enabling 
linear-time computation while maintaining global temporal 
context. The process begins with query-key-value projections, 
where input features  vk ∈ ℝ

T×D    are transformed via learnable 
matrices  Wq,Wk,Wv ∈ ℝ

D×d    into lower-dimensional repre-
sentations ( Q,K ,V   ), reducing computational overhead. Crucially, 
instead of explicitly calculating pairwise attention scores, the 
SSM’s hidden state  hk    implicitly encodes temporal dependen-
cies through its continuous-time dynamics. The attention 
weight  ak    at each time step  k    is derived by normalizing the 
contribution of the current state to the classification objective, 
formulated as  ak = Sigmoid

(
� ⋅ ∥Chk ∥2+�

)
   , where  �    and  �    

are learnable parameters, and  C    is the SSM’s output matrix. 
This approach bypasses quadratic complexity by exploiting 
the SSM’s sequential processing capabilities.

   The attention output  ak    recalibrates features through a hybrid 
operation:  ̃vk = ak ⊙ vk +

(
1−ak

)
⊙ AvgPool

(
vk
)
   , where  ⊙    

denotes element-wise multiplication. This design enables dual 
functionality—emphasizing diagnostically critical temporal seg-
ments (e.g., transient connectivity fluctuations in MDD) while 
suppressing noise-corrupted intervals. The mechanism inher-
ently enhances robustness to site-specific artifacts and motion-
related noise by attenuating attention to unreliable time points.

   Theoretical advantages emerge from integrating attention 
with SSM dynamics: MSC-Mamba achieves O(L) complexity 
for sequence length  L   , outperforming Transformer-based 
approaches [ O

(
L2
)
   ] in scalability. The gating mechanism adap-

tively balances local detail preservation and global pattern 
integration across multiscale features, ensuring optimal uti-
lization of both high-resolution transient signals and low-
resolution trend information. This synergy enables precise 
identification of subtle psychopathology-related dynamics 
while maintaining computational efficiency for large-scale 
fMRI datasets.

   • Output projections. The final output of each Mamba mod-
ule is obtained through a linear projection, mapping the high-
dimensional representation back to the original input space.

   Classification layer. The integrated features are passed 
through a classification layer to predict the presence of MDD.

﻿﻿  

where  Wk    and  bk    are learnable parameters, and  Softmax(⋅)    is 
the softmax activation function.   

Training and optimization
   The model is trained using a supervised learning approach with 
the cross-entropy loss function, which is suitable for classifica-
tion tasks.
﻿﻿  

where  yi    is the true label, N represents the number of samples, 
and  ̂yi    is the predicted probability of the ith sample. The Adam 
optimizer [  31 ] is employed for parameter updates, combining 
adaptive learning rates and momentum to stabilize training. 
The update rule is given by:
﻿﻿  

where  �    represents the model parameters,  �    is the learning rate, 
﻿̂mt    and  ̂vt    are the bias-corrected first and second moment esti-
mates, and  �    is a small constant to prevent division by zero.    

Experiments
   Our experiments are carried out on an NVIDIA Tesla V100 with 
32 GB memory. The learning rate within the network is set as 
0.001, and the weight decay for regularization is 5e−4. For a fair 
comparison with other state-of-the-art methods on the dataset, 
we evaluate the performance of MSC-Mamba with different 
methods. Eighty percent of the data are used for model training 
and the remaining 20% are used as a validation set for testing. 
We use the SiLU [  32 ,  33 ] as activation functions and normaliza-
tion layers (LayerNorm) [  34 ]. The parameters of the model are 
fine-tuned based on the results of the validation set, allowing us 
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,
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ŷi
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to obtain the best hyperparameters. To comprehensively assess 
the performance of MSC-Mamba, 3 common metrics are used, 
including accuracy, precision, and recall.    

Results

Methods for comparison
   We evaluate MSC-Mamba against several other methods to 
ensure a fair comparison. These competing models are all 
trained using similar learning schemes, as described below. (a) 
1DCNN: A conventional deep learning approach, the 1D con-
volutional neural network (1DCNN) has been widely used in 
computer vision tasks. In this experiment, we set the output 
channels to 128, the kernel size to 2, and the stride to 1. To 
prevent overfitting, batch normalization and max pooling are 
applied. (b) LSTM: The long short-term memory (LSTM) net-
work is commonly employed in neuroimaging for sequence 
data processing. In this experiment, the LSTM has a hidden 
layer size of 100 and consists of a single hidden layer, with a 
fully connected layer added afterward for MDD classification. 
(c) 1DCNN_LSTM: A combination of CNN and LSTM, which 
are both widely used, is applied here. The CNN includes 2 lay-
ers: the first with 256 channels and the second with 64 channels. 
The kernel size is set to 3, and the stride is fixed at 1. The LSTM 
also uses a hidden layer size of 100 and one hidden layer. A 
fully connected layer is added at the end for classification. (d) 
ST-GCN: This model integrates graph convolutional networks 
(GCNs) with temporal convolutional networks (TCNs), as pro-
posed by Azevedo et al. [  35 ]. It learns spatial and temporal 
features from rs-fMRI data for classification tasks. (e) DKAN: 
The diffusion kernel attention network (DKAN) [  36 ], proposed 
by Zhang et al., replaces the original dot product attention in 
Transformers with kernel attention to reduce parameters. 
Additionally, it employs a diffusion mechanism for enhanced 
classification performance in mental disorder prediction. (f) 
Transformer-Encoder model: The Transformer-Encoder model 
proposed by Dai et al. [ 11 ] simplifies the Transformer archi-
tecture by omitting the Decoder, reducing model complexity, 
and eliminating the need for complex feature selection for 
end-to-end classification. (g) SVM: A support vector machine 
(SVM) is employed as a baseline classifier, known for its robust-
ness and effectiveness in classification tasks [  37 ]. (h) NBS/
MDMR-SVM: NBS and MDMR are state-of-the-art connec-
tome-wide association studies (CWAS) techniques used to 
identify key brain network features associated with diseases. 
We apply a grid search to select the NBS threshold from 0.05 
to 0.15, resulting in features of varying sizes for the analysis. (i) 
GCN: A semi-supervised GCN is used, with feature selection 
performed via recursive feature elimination. Each node in the 
network represents a subject. (j) BrainNetCNN: BrainNetCNN 
uses a convolutional approach to train the connectome matrix, 
incorporating edge-to-edge (E2E), edge-to-node (E2N), and 
node-to-graph (N2G) layers. The architecture includes 2 E2E 
layers with 32 channels, one E2N layer with 64 output features, 
and one N2G layer with 30 output features. A dropout rate of 
0.5 is applied, following the original design. (k) BrainGNN: The 
brain graph neural network (BrainGNN) introduces ROI-aware 
graph convolutional and ROI-selection pooling layers to pre-
dict neurological biomarkers, outperforming traditional meth-
ods for fMRI analysis. (l) HGNN and DHGNN: These models 
utilize hypergraph neural networks to capture complex asso-
ciations between brain parcellations. We follow the original 

structure, modifying the classifiers for graph-based classifica-
tion tasks. (m) HI-GCN and TE-HI-GCN: The hierarchical 
graph convolutional network (HI-GCN) links graph topology 
with participant similarity. We discard the transfer learning 
component to make a fair comparison with other models. (n) 
MDCN: The multivariate distance-based connectome network 
(MDCN) [  38 ] is a deep learning framework that combines 
graph neural networks with multivariate distance matrices, 
achieving superior results over traditional CWAS methods in 
analyzing brain connectomes and classifying disorders like 
ASD and ADHD.

   Table  4  shows the performance of various methods for clas-
sifying MDD versus NC, highlighting differences in accuracy, 
precision, and recall. MSC-Mamba achieves the highest accu-
racy at 69.91%, with a precision of 70.62% and a recall of 
67.96%, indicating a well-balanced performance. LSTM, known 
for handling sequential data, underperforms with 52.12% accu-
racy, 54.23% precision, and 66.75% recall, suggesting that it may 
not fully exploit spatial relationships in the data. The hybrid 
1DCNN_LSTM model improves performance to 56.42% accu-
racy, 56.90% precision, and a high recall of 70.58%, effectively 
capturing both spatial and temporal features. The ST-GCN model, 
despite its advanced capability in handling spatial–temporal 
graphs, achieves lower results with 51.12% accuracy, possibly 
due to the complexity of graph structure learning or dataset-
specific characteristics. The DKAN model, which introduces 
a kernel attention mechanism and diffusion process, achieves 
52.03% accuracy, 54.24% precision, and 62.15% recall, indicat-
ing that while innovative, it may not be as effective in this clas-
sification task. The Transformer-Encoder model performs 
significantly better with 67.21% accuracy, 68.60% precision, 
and 63.96% recall, showcasing its strength in capturing long-
range dependencies. Overall, MSC-Mamba stands out with its 
superior balance of high accuracy and precision, demonstrating 
robustness and reliability in classifying MDD. The slightly lower 
recall of MSC-Mamba may be due to the model prioritizing 
precision, resulting in more false negatives, which sacrifices 
some recall in favor of reducing false positives. 

   Table  5  provides a detailed comparison of classification 
performance on the Autism Brain Imaging Data Exchange 
(ABIDE) dataset across multiple methods. The results dem-
onstrate that traditional methods like SVM and MDMR-
SVM show relatively lower performance, with accuracies of 

Table 4. Results of different methods for MDD detection. Bold-
face indicates best performance.

Method Accuracy (%) Precision (%) Recall (%)

 1DCNN 58.72 59.62 67.52

 LSTM 52.12 54.23 66.75

 1DCNN_LSTM 56.42 56.90 70.58
 ST-GCN [ 35 ] 51.12 47.54 60.24

 DKAN [ 36 ] 52.03 54.24 62.15

 Transformer-
Encoder model [ 11 ]

67.21 68.60 63.96

 MSC-Mamba 69.91 70.62 67.96
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65.56% and 67.43%, respectively. Graph-based models such 
as GCN, BrainGNN, and BrainNetCNN improve the results 
slightly, with BrainNetCNN achieving an accuracy of 69.73%. 
Among the advanced hierarchical and hybrid graph approaches, 
HGNN and DHGNN stand out with accuracies of 70.96% and 
71.45%, respectively. MSC-Mamba achieves the highest scores 
across all metrics, with an accuracy of 73.08%, a precision of 
72.82%, and a recall of 74.06%. This indicates a superior ability 
to identify both true positives (high recall) and maintain high 
prediction reliability (high precision). The results suggest that 
the proposed method effectively captures the complex brain con-
nectivity patterns and inter-site variability inherent in the ABIDE 
dataset, outperforming both traditional and state-of-the-art 
graph-based methods. This demonstrates the robustness and 
applicability of MSC-Mambah in handling heterogeneous and 
multisite neuroimaging data.    

Ablation study
   In this section, we perform ablation experiments and verify the 
effectiveness of MSC-Mamba on the REST-meta-MDD dataset 
and ABIDE dataset as shown in Figs.  3  and  4 . The ablation 

conditions include (a) only single-scale information (Mamba-ss) 
referring to the exclusive use of high-resolution data (i.e.,  X(1)    
in the “Outer and inner Mambas” section), (b) Mamba-rs (a 
restricted structure without channel mixing and channel inde-
pendence), and (c) the original Mamba.                

   The experimental results on ablation condition (a) indicate 
that the multiscale setting achieved the best classification per-
formance. This success can be attributed to the model’s ability 
to capture features at different temporal resolutions, which is 
crucial for identifying patterns in complex time-series data. By 
using multiple convolutional layers with varying kernel sizes, 
the model can effectively learn both fine-grained and coarse-
grained temporal features. This comprehensive feature extrac-
tion likely enhances the model’s ability to distinguish between 
MDD/ASD and HC more accurately. This comparison under-
scores the importance that fuses multiscale feature extraction 
with other model enhancements for optimal performance.

   The experimental results of the ablation condition (b) show 
the effectiveness of channel mixing and channel independence. 
It helps stabilize training and reduce overfitting, especially for 
the smaller dataset. The experimental results of ablation condi-
tion (c) indicate that the original Mamba model alone does not 
perform well in this study. It fails to improve the model’s perfor-
mance. This lack of improvement suggests that the baseline 
Mamba model struggles to effectively leverage the intrinsic vari-
ability of the dataset. These results underscore the limitations of 
the original Mamba model and the necessity of enhancements 
to better adapt it to the complexity of the data. From Figs.  3  and 
 4 , we also see that MSC-Mamba (as shown in Fig.  1 ) with mul-
tiscale information and residual connections achieves relatively 
better performance in most cases. This further demonstrates the 
effectiveness of fusing multiscale representation with residual 
connections at the intermediate feature level.   

Identifying brain regions affected by MDD and ASD
   Figure  5  illustrates related regions, visualized from multiple 
perspectives (left lateral, right lateral, superior, and posterior 
views). The red-highlighted areas correspond to specific regions 
of interest defined by the AAL-116 atlas, a widely used brain 
parcellation scheme that divides the brain into 116 anatomical 
regions for standardized neuroimaging analysis. We find that 
the highlighted regions are primarily associated with emotional 
regulation, cognitive control, and memory processes, which are 
often disrupted in MDD. These include the prefrontal cortex, 

Table 5. Comparisons of the classification performance for ASD 
detection. Boldface indicates best performance.

Method Accuracy (%) Precision (%) Recall (%)

 SVM 65.56 60.99 70.00

 NBS-SVM [ 34 ] 63.51 53.08 72.85

 MDMR-SVM [ 35 ] 67.43 62.59 72.11

 GCN [ 35 ] 69.11 71.22 67.09

 BrainGNN [  39 ] 69.31 68.64 68.18

 BrainNetCNN [  40 ] 69.73 72.54 66.73

 HGNN [  41 ] 70.96 73.25 69.47

 DHGNN [ 41 ] 71.45 71.20 71.86

 HI-GCN [  42 ] 69.31 70.62 73.00

 TE-HI-GCN [  43 ] 71.08 71.92 72.38

 MDCN [  44 ] 72.41 71.73 73.16

 MSC-Mamba 73.08 72.82 74.06

Fig. 3. Results of the ablation study in MDD vs. HC classification.
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anterior cingulate cortex, hippocampus, and amygdala, aligning 
with previous studies that emphasize the role of these regions 
in the pathophysiology of psychiatric disorders.        

   Figure  6  illustrates brain regions associated with ASD based 
on the Schaefer-100 atlas, a parcellation scheme that divides 
the brain into 100 functional regions of interest. The regions 
highlighted in blue represent areas where significant differences 
have been obtained in individuals with ASD compared to neu-
rotypical individuals. These regions are visualized from differ-
ent perspectives, offering a comprehensive understanding of 
their spatial distribution. We find that these highlighted regions 
are primarily associated with social cognition, sensory process-
ing, and repetitive behaviors. Specifically, the fusiform gyrus, 
superior temporal sulcus, and insula show reduced activity or 
connectivity, contributing to difficulties in interpreting social 

cues and sensory integration. Additionally, hyperconnectivity 
in the default mode network, including the medial prefrontal 
cortex and posterior cingulate cortex, suggests altered self-
referential processing and reduced engagement with external 
stimuli, consistent with core symptoms of ASD.            

Discussion
   This paper presents a novel state-space model-based framework 
for classifying MDD and ASD using rs-fMRI data collected 
from multiple imaging sites. The results demonstrate the 
robustness and effectiveness of MSC-Mamba in handling the 
complexities of neuroimaging data, including long-term tem-
poral dependencies, high-dimensional feature spaces, and inter-
site variability. Compared to traditional and state-of-the-art 

Fig. 4. Results of the ablation study in ASD vs. HC classification.

Fig. 5. Brain regions identified using the AAL-116 atlas, highlighting areas associated with MDD.

Fig. 6. Brain regions identified using the Schaefer-100 atlas, highlighting areas associated with ASD.
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methods, MSC-Mamba achieves superior performance across 
key metrics, including accuracy, precision, and recall, for both 
the REST-meta-MDD and ABIDE datasets. These findings high-
light the potential of the model to address critical challenges 
in the field of neuroimaging-based diagnostics, paving the way 
for its clinical and research applications.

   MSC-Mamba is based on state-space models to address limi-
tations commonly observed in traditional graph-based or deep 
learning methods. One key strength of this approach lies in its 
ability to capture long-term temporal dependencies in fMRI 
time-series data while maintaining computational efficiency. 
This contrasts with GCNs, which are limited by their focus on 
local neighborhood information and susceptibility to over-
smoothing in deeper architectures. Similarly, while Transformer-
based models have been widely adopted for sequence modeling 
tasks, their quadratic time complexity with respect to sequence 
length makes them computationally prohibitive for large-scale 
datasets like those used in this study. By comparison, the linear 
scalability of the state-space model ensures that MSC-Mamba 
remains efficient and applicable even for multisite datasets with 
high-dimensional input features.

   The integration of multiscale temporal modeling within the 
framework further enhances its ability to capture both local 
and global neural dynamics. By processing data at multiple 
temporal resolutions, the model effectively identifies short-
term fluctuations as well as long-term trends in brain activity. 
This multiscale approach is particularly valuable for under-
standing the complex patterns associated with psychiatric dis-
orders like MDD and ASD, which often involve abnormalities 
at multiple levels of brain function. Additionally, the dynamic 
handling of channel mixing and channel independence ensures 
that the model can flexibly adapt to the varying characteristics 
of different brain regions, capturing both inter-region depen-
dencies and region-specific temporal dynamics.

   Another critical strength of MSC-Mamba is its ability to 
address the heterogeneity inherent in multisite neuroimaging 
data. Variability in imaging protocols, scanner settings, and par-
ticipant demographics often introduces site-specific biases that 
can confound analysis and reduce model performance. MSC-
Mamba mitigates these challenges through feature alignment 
and distribution adaptation mechanisms. By aligning feature 
representations across imaging sites and reducing discrepancies 
in both marginal and conditional data distributions, the model 
ensures consistent performance across diverse datasets. This 
adaptability makes the framework particularly well-suited for 
large-scale, multisite studies, where data heterogeneity is a com-
mon challenge.

   Our contributions are summarized as follows: (a) Efficient 
long-term dependency modeling: We propose a state-of-the-art 
state-space model architecture that efficiently captures long-
term dependencies in multivariate time-series data. This inno-
vation addresses the inherent challenges of modeling complex 
temporal dynamics in fMRI data. Unlike traditional approaches 
such as Transformers, which suffer from quadratic time complex-
ity and high computational demands, MSC-Mamba achieves 
linear scalability, making it both computationally efficient and 
practical for large-scale applications. (b) Enhanced classifica-
tion for MDD and ASD: MSC-Mamba is based on the strengths 
of state-space frameworks to accurately classify MDD and ASD 
by capturing intricate patterns in brain activity. This approach 
effectively models the nuanced temporal relationships in fMRI 
signals, enabling robust identification of diagnostic features. 

The ability ensures that the model is well-suited to handling 
the complex temporal dynamics characteristic of psychiatric 
disorders. (c) Robust multisite generalization: MSC-Mamba 
is designed to accommodate the variability and heterogeneity 
present in multisite imaging data. By incorporating mecha-
nisms to address differences in acquisition protocols, scanning 
conditions, and participant populations, MSC-Mamba ensures 
consistent and reliable performance across diverse imaging 
sites. This adaptability not only enhances the model’s gener-
alizability but also supports its potential for real-world clini-
cal deployment in large-scale studies that require integration 
of data from multiple sources.

   Despite its promising results, the study has limitations that 
warrant further investigation. First, while the model demon-
strates robust performance for MDD and ASD classification, 
its applicability to other psychiatric or neurological disorders 
remains unexplored. Expanding the model to additional datasets 
and conditions could provide further insights into its generaliz-
ability and utility. Second, while the framework incorporates 
feature alignment and distribution adaptation mechanisms, inter-
site variability in imaging protocols may still introduce subtle 
biases. Future work could focus on refining these mechanisms, 
potentially investigating more advanced techniques such as 
domain-invariant feature learning or adversarial alignment.   

Conclusion
   This paper presents MSC-Mamba, a state-space model-based 
framework designed to improve the classification of psychiatric 
disorders using neuroimaging data, specifically rs-fMRI. The 
primary challenge in neuroimaging-based psychiatric disorder 
classification is dealing with the inherent complexity of high-
dimensional fMRI data, including long-term temporal depen-
dencies, intersite variability, and noise across multiple imaging 
centers. MSC-Mamba addresses these challenges by incorporat-
ing a multiscale contextual approach, enabling the model to 
capture both short-term and long-term dynamic patterns in the 
brain’s functional networks. Additionally, the model adapts to 
the diverse characteristics of data collected from different sites, 
effectively mitigating site-specific biases that are commonly 
observed in large-scale multisite neuroimaging studies. The 
results of this study demonstrate that MSC-Mamba is capable 
of achieving state-of-the-art performance in the classification 
of both MDD and ASD across large and heterogeneous datasets. 
The model’s flexibility in handling multiscale features and its 
ability to integrate both global and local brain connectivity pat-
terns contribute to its robustness and accuracy in detecting 
psychiatric conditions. Furthermore, the performance of MSC-
Mamba indicates its potential for clinical applications, where 
reliable, data-driven diagnostic tools are essential for improving 
the accuracy and efficiency of psychiatric disorder detection.   
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