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Abstract

In-context learning (ICL), a type of universal model,
demonstrates exceptional generalization across a wide
range of tasks without retraining by leveraging task-specific
guidance from context, making it particularly effective for
the intricate demands of neuroimaging. However, current
ICL models, limited to 2D inputs and thus exhibiting sub-
optimal performance, struggle to extend to 3D inputs due
to the high memory demands of ICL. In this regard, we in-
troduce Neuroverse3D, an ICL model capable of perform-
ing multiple neuroimaging tasks in 3D (e.g., segmentation,
denoising, inpainting). Neuroverse3D overcomes the large
memory consumption associated with 3D inputs through
adaptive parallel-sequential context processing and a U-
shaped fusion strategy, allowing it to handle an unlimited
number of context images. Additionally, we propose an op-
timized loss function to balance multi-task training and en-
hance focus on anatomical boundaries. Our study incor-
porates 43,674 3D multi-modal scans from 19 neuroimag-
ing datasets and evaluates Neuroverse3D on 14 diverse
tasks using held-out test sets. The results demonstrate that
Neuroverse3D significantly outperforms existing ICL mod-
els and closely matches task-specific models, enabling flexi-
ble adaptation to medical center variations without retrain-
ing. The code and model weights are publicly available at
https://github.com/jiesihu/Neuroverse3D.

1. Introduction

Computational neuroimage analysis has significantly ad-
vanced our understanding of the brain and non-invasive
diagnostics, crucial for quantitative analysis and precision
medicine. Recently, universal models trained on multi-
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domain datasets have gained attention for their ability to
handle diverse tasks (e.g., segmentation, denoising, in-
painting) and modalities (e.g., MRI-T1w, MRI-T2w, CT),
demonstrating adaptability to domain shifts and even un-
seen tasks [12, 38, 43, 57]. In-context learning (ICL) has
emerged as a promising paradigm [7, 10, 51], enabling
models to adapt to domains without retraining by using
image-label pairs as task-specific guidance. These infor-
mative contexts make ICL models particularly effective for
segmenting tissues with intricate morphology and unifying
diverse image generation tasks.

While ICL models show clinical potential in neuroimag-
ing [12, 14, 54], they are limited by dimensionality. Exist-
ing models process 3D volumes as 2D slices, which results
in the loss of inter-slice correlations and volumetric context.
This lack of global spatial awareness hinders performance
on neuroimaging tasks, such as hippocampus segmentation
which requires 3D anatomical understanding [13, 20].

To address this limitations, it is crucial to develop an ICL
model that captures 3D global information. However, cre-
ating a universal ICL model with 3D input presents signifi-
cant challenges, as 3D images can be over 100 times larger
than their 2D slices, leading to substantial memory require-
ments. This results in three critical issues: (1) Context
size is significantly limited, hindering performance as larger
contexts size demonstrably improve outputs [7, 12, 14, 52].
(2) Training models with more parameters becomes infeasi-
ble, restricting their capacity and potential performance. (3)
Processing high-resolution 3D inputs becomes difficult.

To develop 3D universal models in neuroimaging, we in-
troduce Neuroverse3D, an in-context learning model that
takes 3D neuroimaging as input. To our knowledge, it is
the first 3D ICL universal model for neuroimaging. To mit-
igate the significant memory demands, we propose Adap-
tive Parallel-Sequential Processing (APSP) and a U-shape
fusion strategy to partition the entire context into multi-
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Figure 1. (a) Parallel processing of all contexts, which is applied
by most existing ICL models. (b) Sequential processing of each
context, which greatly reduces memory usage. (c) It shows the
memory increment when increasing the context size. Our pro-
posed model processes contexts in an adaptive mode, allowing for
flexible parallel and sequential processing of contexts.

ple mini-contexts for processing, while ensuring the con-
sistency of the model’s gradient when training and output
when inferencing. As shown in Figure 1, this approach
can significantly reduce memory consumption, even accom-
modating unlimited context sizes. Additionally, to address
task imbalance from increased dimensionality and enhance
anatomical boundary focus, we propose an optimized loss
function, further improving performance. As the first 3D
ICL model in neuroimaging, we evaluate Neuroverse3D’s
potential across diverse tasks on held-out datasets. Our con-
tributions are summarized as follows:

* We mitigate the high memory demands of 3D image con-
texts using a novel APSP approach with a U-shaped fu-
sion strategy, enabling unlimited context processing for
both training and inference. This significantly improves
the feasibility of deploying 3D neuroimaging ICL models
in clinical practice.

* We develop an optimized loss function to address class
imbalance resulting from increased dimensionality and
enhance focus on challenging segmentation regions and
anatomical boundaries, further improving performance.

* We propose Neuroverse3D, the first 3D ICL univer-
sal model for neuroimaging, trained on extensive multi-
center datasets. Neuroverse3D significantly outperforms
other ICL models, achieving over 20 absolute Dice point

gains across four tasks and matching task-specific perfor-
mance, offering valuable insights for universal model de-
velopment.

2. Related Work

2.1. Domain Challenges in Medical Imaging

Deep learning models in medical imaging frequently face
domain shifts due to heterogeneous imaging data distribu-
tions, which reduce model performance on new, unseen do-
mains. Solutions like domain adaptation [29, 53, 55, 59] re-
quire target-domain fine-tuning, limiting practical use due
to the need for deep learning expertise. Domain generaliza-
tion aims to produce models that generalize to new domains
without fine-tuning [30, 32, 49, 58]. While it alleviates the
effects of domain shift, generalization remains challenging
because models lack knowledge about unseen domains dur-
ing training. Different from domain adaptation and domain
generalization methods, universal models have emerged as
a promising solution by learning generalizable image repre-
sentations from a large number of datasets.

2.2. Universal Models in Medical Imaging

Universal models in medical imaging can be classified
into three categories based on their prompt types. The
first category utilizes symbolic prompts, such as points or
bounding boxes, as demonstrated by models like SAM [11,
34, 43]. The second category employs natural language
prompts [38, 39]. The third category, also known as ICL
models, uses image-label pairs as prompts [12, 14, 28, 54].
These universal models, trained on extensive datasets, ex-
hibit exceptional generalization capabilities. Among these,
image-label pairs provide rich contextual information, en-
abling ICL models to perform accurate segmentation on un-
seen tasks and even handle image generation tasks. How-
ever, the richness of these prompts in ICL models’ in-
puts significantly increases memory consumption, a critical
challenge that this study seeks to overcome.

2.3. In-Context Learning

Originally developed in natural language processing [10],
ICL vision models has recently shown potential for creat-
ing universal models that can adapt to new tasks and do-
mains by using image-label pairs as prompts to convey task-
specific information. In natural image processing, ICL-
based models such as LVM [7], Painter [51], and Seg-
GPT [52] have demonstrated strong versatility across di-
verse tasks.

Recent studies indicate that ICL models achieve high
accuracy and robust cross-domain generalization in neu-
roimaging, effectively addressing domain shifts across var-
ied imaging modalities [12, 14, 28, 54]. Models like Uni-
verSeg [12], Neuralizer [14], and One-Prompt [54] lever-
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Figure 2. [llustration of our model architecture. The network con-
sists of two branches for extracting representations from the tar-
get and context images, respectively. The Target-to-Context and
Context-to-Target Fusion modules enable information exchange

between the branches. Our model adaptively performs both par-
allel and sequential context processing.

age context sets to adapt to new domains and tasks with-
out retraining, performing effectively in few-shot scenarios.
However, current ICL models are unable to directly process
3D neuroimage data, limiting their ability to fully capture
the volumetric information of 3D images.

3. Method

In-Context Learning (ICL) models for neuroimaging
achieve universality by learning task-specific processing
from context examples, typically image-label pairs. In
the following sections, we detail our Adaptive Parallel-
Sequential Processing (APSP) and U-shaped fusion strategy
for efficient context processing, followed by our optimized
loss function for further performance improvements.

3.1. Model

As illustrated in Figure 2, the model contains two 3D U-
Net branches: a target branch for extracting target image
representations and a context branch for extracting context
representations. These branches communicate through the
U-shape fusion strategy at each stage. The context branch
receives concatenated image-label pairs as input and uses
APSP to compute the mean context representation, which is
then passed to the target branch decoder for final prediction
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Figure 3. Illustration of the Target-to-Context Fusion and Context-
to-Target Fusion modules.

generation.

Context Partition. Given a task-specific context S =
{(z4,y:)} £, where each (z;, y;) represents an image-label
pair within a context set of size L, we perform context parti-
tioning. This divides S into n = [£] disjoint mini-contexts
{sj}}—1, each containing ¢ image-label pairs, with £ deter-
mined by available memory resources. Larger values of ¢
decrease inference time but increase memory usage, and
vice versa. If L is not divisible by ¢, the final mini-context
will contain fewer than ¢ pairs, ensuring that U;L:1 s5;=25.

Adaptive Parallel-Sequential Processing. APSP accom-
modates arbitrary context partitions. Specifically, each
mini-context is initially processed in parallel, and the re-
sulting context representations are subsequently fused dur-
ing sequential processing.

During parallel processing, all image-label pairs within
a mini-context s; are processed simultaneously through
shared-weight 3D U-Nets in the context branch. The con-
text representation for each mini-context s; is computed as
C; = g(sj, fenc(x)), where x represents the target image,
g denotes the context branch, and f,. is the encoder of the
target branch. Here, C; is a set comprising the represen-
tations from each stage of the context decoder, defined as
Cj = {Chec ;111> Where D represents the number of de-
coder stages. Cg, ; s computed via a parallel mean aggre-
gation of image-label pairs inside s;:

4
& 4—1 & (1)
dec,j — / dec,j,k>

k=1

where C(iiec, ;i denotes the output representation of the k-th
image-label pair from the ¢-th decoder stage in mini-context
s;. This mean aggregation ensures the output is invariant to
the order of image-label pairs within a mini-context.

The sequential computation procedure for C'is outlined
in Algorithm 1. The model processes each mini-context se-



Algorithm 1 Adaptive Parallel-Sequential Processing. Let
x and S denote the target image and context set, respec-
tively. Efiec’ ; represents the context representation of the j-
th mini-context at the i-th decoder stage. len(s;) indicates
the number of image-label pairs in s;.

(x,y,8)~T > Sample data
{si}jo1 < S > Split context set into mini-contexts
{et P, < {0}, > Initialize representation
w0 > Initialize weight accumulator

forj=1,...,ndo

{Efiec,j}i’;l = g(sj7 feﬂc(x))
o —

> Sequential processing

{E(zjec}i’;l A {aé(ziec + (1 - a)%ec,j}gl >
Sequential mean

w < w + len(s;) > Update cumulative weight

delete {c}.. ;} 72, if j #n > Release memory
end for
C {Eéec}gl

7§ < face(fene(),O) > Generate final prediction

quentially, updating C iteratively. The sequential mean op-
eration ensures equal weighting of image-label pairs across
the entire context set, making C invariant to the ordering of
mini-contexts. After C is obtained, and the final prediction
is computed as § = faec(fenc(z), C), where fyec denotes
the decoder of the target branch. The combination of par-
allel and sequential mean operations in APSP guarantees
consistent mean context representation computation for any
context order or partition.

To save memory, intermediate features from processed
mini-contexts are discarded after contributing to C, with
only the last mini-context retained for gradient computa-
tion during training. This reduces memory usage to the fi-
nal mini-context rather than the entire context set. More-
over, during training, we randomly shuffle mini-contexts
and scale the last mini-context’s representation C,, by a
factor of n during gradient computation. This ensures the
expected value of the gradients computed using APSP is
equivalent to the expectation when no mini-contexts are dis-
carded, as demonstrated below:

Erx [VLApsp-scated, ) = V Lu, )

where V Ly and V.Lapsp_scaled,» denote the gradients ob-
tained from full-context processing and APSP, respectively.
7 represents the original index of the mini-context selected
for gradient computation in APSP. A proof of this equiva-
lence is provided in the supplemental Sec. A.1.

U-Shape Fusion Strategy. The U-shaped design makes
feature propagation through two phases: first, from the tar-
get branch to the context branch at each encoder stage via
Target-to-Context Fusion modules, and then from the con-

text branch back to the target branch at each decoder stage
through Context-to-Target Fusion modules, as illustrated in
Fig. 2. This U-shaped representation flow is actually essen-
tial, as it allows the model to avoid storing features from
previously processed mini-contexts, a limitation of alterna-
tive fusion strategies. Further explanation are provided in
the supplemental Sec. A.2.

As illustrated in Fig. 3, the fusion components within
the Target-to-Context Fusion and Context-to-Target Fusion
modules are identical. The fusion operation is defined as

Fusion(c’, t*) = Conv(c' || t*), 3)

where ¢’ and ¢* denote the feature representations of the i-
th stage from the context and target branches, respectively.
Conv represents a convolutional operation, and || signifies
feature map concatenation.

Target-to-Context Fusion. This module is incorporated af-
ter each encoder stage of the context branch as follows:

¢ = A(Fusion(c', t") + ¢%), 4)

where ¢ represents the fused context representation propa-
gated to the next stage, and .4 denotes the activation func-
tion. Convolutional parameters are shared across all image-
label pairs to enable parallel processing.

Context-to-Target Fusion. This module is integrated after
each decoder stage of the target branch as follows:

t" = A(Fusion(¢’, t') 4 t*), )

where 7' denotes the fused target representation that is sent
to the next decoder stage, and ¢* represents the mean context
representation.

3.2. Loss Function

The total loss function is defined as:
Liota = E- [E(ﬂ,yT),ST [ATET@Tny)H ’

where 7 denotes the sampled tasks, and AT € R* repre-
sents the task-specific weighting coefficient. The procedure
begins by sampling a task 7 from all tasks, followed by
sampling a target image x”, corresponding ground truth y”
and a support set S” within that task. The task-specific loss
function L7 is then applied to compute the loss between the
y" and y".

For both segmentation and generation tasks, we employ
an L -based loss function, with modifications to accommo-
date the characteristics of 3D neuroimages.

Specifically, 3D neuroimage segmentation, unlike its 2D
counterpart, exhibits increased sparsity in structures like the
hippocampus and amygdala due to the added dimension,
resulting in greater class imbalance. To mitigate this, we
propose a modified Lomooth—1,, 108s:
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This formulation, using a higher exponent than standard
Lsmooth— L, » Prioritizes challenging anatomical regions over
simpler ones, balancing performance across diverse tasks.
We opted against Dice or Focal loss to avoid further com-
plicating the balance between segmentation and generation
tasks.

For generation tasks, we apply a standard Lsmooth—1,
loss. Furthermore, to achieve better generative performance
on brain images filled with intricate anatomical boundaries,
we incorporate an additional Lymeoth—r, l0ss on the inten-
sity difference of the image, inspired by [40]:

‘Cgen(g? y) _ Esmoolh;Ll (:&; y) + ‘Csmoothle (AQ; Ay)

)
@)
where Ay denotes the intensity difference at the current
voxel relative to its neighboring voxels.

4. Experiments
4.1. Data

Datasets. To ensure robust cross-center generalization and
diversity, we collected 19 datasets with multiple modal-
ities and centers, comprising 43,674 scans. The dataset
includes common neuroimaging modalities including T1,
T2, FLAIR, MRA, DWI, ADC, PD, and CT. Data from
15 datasets, including 38,126 scans and 5,632 segmenta-
tion masks, were used for training and validation [, 3—
5,16, 18,23, 25, 26, 33, 37, 44, 46, 47, 50, 56], with a ran-
dom 9:1 split. Data from the remaining 4 datasets, includ-
ing 5,548 images and 1,096 segmentation masks, was used
as held-out datasets [2, 35, 41, 45] to assess performance
on unseen centers. The held-out dataset was divided into
an 8:2 split for the meta context set (from which ICL mod-
els select context) and the test set. During training, we used
both the original images and images aligned to the MNI 152
template space [17] to increase data diversity. We utilized
FreeSurfer [15] to generate additional anatomical segmen-
tation labels for 3 datasets [2, 18, 47].

Data Preprocessing. To mitigate variability in image size
across neuroimaging datasets, we first resampled the voxel
resolution to 1 mm?®. The brain images were then rescaled to
fit within a 128 x 128 x 128 3D image. Intensity values were
normalized to the [0, 1] range based on the 0.02 and 0.98
intensity percentiles. Segmentation masks were binarized
by assigning 0 to the background and 1 to the foreground.

Neuroimaging Tasks. With these datasets, our model
was trained on multiple segmentation tasks, including
anatomical segmentation [8], tumor segmentation [46],

vessel segmentation [56], and generation tasks, includ-
ing bias field correction [19], inpainting [42], super-
resolution [36], Gaussian noise removal, salt-and-pepper
noise removal [36], 2D-to-3D reconstruction [31], modality
transformation [48], and skull stripping [27]. For segmenta-
tion tasks, binary masks were produced by thresholding the
model outputs at 0.5.

Image and Task Augmentation. During training, we ap-
plied data augmentation across two dimensions: image and
task. In addition to standard image augmentations, we en-
hanced the contrast diversity of images using a randomly
initialized convolutional network [49]. For task augmenta-
tion, we introduced random task overlapping and also fol-
lowed the method introduced in [14]. Synthetic brain data
with random modalities [9] was also added. Further details
are provided in supplemental Sec. B.3.

Detailed information on datasets and tasks is provided in
the supplemental Sec. B.

4.2. Compared Models

Neuroverse3D. The target and context branches are based
on a 5-stage 3D U-Net architecture [13], with each stage
comprising two residual blocks [21] constructed from 3 x 3
convolutional layers. The network initiates with 32 chan-
nels in the first stage, subsequently doubling the channel
count at deeper stage. GELU activation functions [22]
are employed throughout the network. Neuroverse3D is
trained jointly across all tasks, whereas Neuroverse3D-
unseen maintains an identical architecture but excludes the
evaluated task during training. Consequently, we trained
a group of Neuroverse3D-unseen models for unseen task
evaluation.

Task-Specific Models. We compared Neuroverse3D
against 3D task-specific models, which shared identical ar-
chitecture and channel configurations but lacked the con-
text branch. These task-specific models were trained on the
held-out dataset, thereby mitigating domain shift concerns.
This approach simulates the scenario where medical cen-
ters traditionally train models for specific scenario without
employing ICL model. Identical data augmentation strate-
gies were applied, excluding task augmentations that could
potentially disadvantage task-specific models, such as the
application of Sobel filters to segmentation masks. We eval-
uated performance under both few-shot learning scenarios,
where models were trained with only context set data, and
fully supervised learning scenarios, leveraging all available
data from the meta-context set.

Other In-Context Learning Models. We compared
our method with state-of-the-art ICL. methods, including
Painter [51], SegGPT [52], UniverSeg [12], and Neural-
izer [14], all designed for 2D inputs. To accommodate the
3D context, we randomly sampled axial slices containing



Cerebral Cortex Seg. Hippocampus Seg.

Thalamus Seg.

Lateral Ventricle Seg. Putamen Seg.

-------------- = i — S
0.8
== E
0.6
=
[
Amygdala Seg Bias Field Correction 0 Salt & Pepper Removal
0.75{ - e I L e I ki mmanteic=T=n A I —
:I: = 1 30
0.50 4 a:_
1 20 ——
0.25
= . | 10 g
Inpainting Super-Resoluti Modality Transform B Painter
______________________ I SegGPT
30 — 25 3 UniverSeg
= | == = Nueralizer
20 20 =1 Task-specific (Few-Shot)
I Neuroverse3D
10 i | 157 Task-specific
| . T ~77 (Fully Supervised)

Figure 4. Performance comparison of Neuroverse3D with other models on held-out datasets, under a context size of 8. This includes ICL
models trained on neuroimages (UniverSeg [12], Neuralizer [14]), models trained on natural images (Painter [51], SegGPT [52]), and task-
specific models in few-shot and fully supervised settings. The Dice coefficient is used for segmentation tasks, and PSNR for generation

tasks.

the segmentation target or brain to construct the 2D context
set. The 2D context sizes were set to 1 for Painter [51], 8
for SegGPT [52], 32 for Neuralizer [14], and 64 for Uni-
verSeg [12], corresponding to the reported optimal context
sizes in their respective publications. The target 3D im-
ages were similarly decomposed into axial 2D slices and fed
into these methods. The resulting 2D outputs were then re-
assembled into 3D images for metric evaluation. We down-
loaded the corresponding pretrained weights for these mod-
els to perform inference. UniverSeg [12] and SegGPT [52]
are restricted to segmentation tasks, and all 2D models are
incapable of performing 2D-to-3D reconstruction task.

Comprehensive details regarding the training and evalu-
ation protocols are provided in supplemental Sec. C.

4.3. Model Comparison on Held-Out Datasets

As demonstrated in Fig. 4, we evaluated Neuroverse3D
against SOTA ICL models and task-specific models. Com-
parisons with Painter were excluded for segmentation tasks
due to its low Dice scores.

In segmentation tasks, Neuroverse3D significantly out-
performed all other ICL models, with Dice score gains ex-
ceeding 20 percentage points for targets such as hippocam-
pus, thalamus, lateral ventricle, and putamen. Furthermore,
it surpassed the performance of few-shot models in all
segmentation tasks, demonstrating that employing an ICL
model in few-shot scenarios offers medical centers a more
cost-effective and accurate solution. Moreover, the perfor-
mance of our model closely approached that of fully su-
pervised U-Net models. We attribute Neuroverse3D’s sub-
stantial performance improvement primarily to its effective

utilization of a 3D architecture, enabling it to not only bet-
ter process 3D target images but also to capture the global
information from the 3D context set, facilitating a more pre-
cise understanding of the segmentation targets.

In generation tasks, Neuroverse3D outperformed all
other ICL models, surpassing Neuralizer and Painter across
all tasks. Its performance closely matched few-shot mod-
els and nearly reached fully supervised levels in salt-and-
pepper noise removal and skull stripping. This highlights
the potential of 3D ICL models in generation tasks. No-
tably, our model’s performance gain in some generation
tasks was less significant. This may be attributed to certain
tasks, like modality transform and super-resolution, where
2D context sufficiently conveys task information, reducing
the advantage of a 3D architecture.

Fig. 5 illustrates qualitative predictions of ICL models,
showcasing results for both axial and sagittal slices. As 2D
ICL models generate predictions on axial slices, discontinu-
ities are frequently observed on sagittal slices. In segmen-
tation, compared to Neuroverse3D, other models demon-
strate lower accuracy and frequent false positives/negatives
in sagittal slices. In generation tasks, Neuralizer gener-
ates excessive background errors, while Painter, despite rea-
sonable performance on Gaussian denoising, struggles with
neuroimage-specific tasks like bias correction and skull
stripping. Conversely, Neuroverse3D maintains consistent
accuracy across all tasks.

These results demonstrate Neuroverse3D’s accurate per-
formance across diverse segmentation and generation tasks
from different medical centers, attributed to its novel ap-
proach for 3D context processing and optimized loss func-
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tion.
4.4. Impact of Context Size

Figure 6 illustrates model performance across varying con-
text sizes. Our model consistently outperforms other mod-
els across all context sizes in both segmentation and gener-
ation tasks. Besides, Neuroverse3D, along with other mod-
els, shows a significant performance increase with larger
context sizes, emphasizing the critical role of context quan-
tity for ICL models. The average metric improvement re-
sulting from increased context size diminishes as the con-
text size increases, reaching a plateau around 16. However,
the standard deviation of predictions continues to decrease,
leading to more stable predictions. APSP overcomes mem-
ory limitations, enabling Neuroverse3D to support larger
or even unlimited context sizes under limited resources,
thereby facilitating the practical use of Neuroverse3D. Seg-
GPT, due to memory limitations, could only support a max-
imum context size of 16 in our experiments.

4.5. Performance on Unseen Tasks

In Fig. 6, Neuroverse3D-unseen shows the model’s abil-
ity to generalize to tasks not encountered during training,
which is of clinical interest.

For segmentation tasks, Neuroverse3D-unseen exhibited
a slight performance reduction compared to Neuroverse3D,
with approximately a 5-point decrease in the Dice coeffi-
cient after the context size was greater than or equal to 8.

However, it still significantly outperformed other ICL mod-
els. For generation tasks, Neuroverse3D-unseen showed a
more substantial performance decline, although it remained
marginally superior to Neuralizer. We attribute the greater
performance drop in generation tasks compared to segmen-
tation tasks to the fact that, during training, Neuroverse3D-
unseen encountered a wider variety of segmentation tasks,
including segmentations of over thirty brain structures and
random combinations of brain structures. This led to a
learning process for segmentation tasks closer to meta-
learning, enabling cross-task generalization. In contrast, the
training set contained fewer generation tasks, leading the
model to tend to memorize each generalization task. This
suggests that incorporating a greater diversity of tasks into
ICL models is a promising direction for further enhancing
cross-task generalization capabilities.

4.6. Memory and Time Requirements

Fig. 7 illustrates the resource consumption under various
settings, where ¢ denotes the size of the mini-context, and
Inf represents the maximum memory usage for a given
mini-context size /. When ¢ = 1, memory consumption
is limited to 7.35GB, and the model operates in a purely se-
quential manner, substantially reducing memory demands
and simplifying deployment. Increasing ¢ results in higher
memory consumption but reduces computation time. Cru-
cially, all settings yield consistent results, demonstrating the
deployment flexibility of our model.
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Figure 6. Performance across different 3D context sizes. A
group of Neuroverse3D-unseen models was trained to assess per-
formance on tasks not encountered during training. Due to com-
putational constraints, segmentation task evaluations here only in-
clude cerebral cortex, hippocampus, thalamus, and lateral ven-
tricle. Generation task evaluations include bias field correction,
Gaussian noise removal, and salt-and-pepper noise removal.

Supplemental Tab. 7 presents a comparison of inference
times across different models. Despite employing the most
extensive context (8 x 128 2D slices), our model demon-
strates superior inference speed compared to other ICL
models. This efficiency stems from the fact that 2D models
process images slice-by-slice, necessitating the recomputa-
tion of context for each slice, thereby resulting in redundant
context feature computations and prolonged inference dura-
tions. This further underscore the importance of developing
Neuroverse3D which inherently avoid this issue.

4.7. Ablation Study of Loss Functions

We evaluated the model’s performance without the pro-
posed modified Lomooth—1,, 10ss and gradient loss, as shown
in Tab. 1.

Removing the modified Limeoth—1z, loss led to a de-
cline in segmentation performance, particularly in small,
complex regions such as the hippocampus (see supplemen-
tal Tab. 4 for details). This indicates that the modified
Lsmooth—L, 10ss helps the model focus on more challenging
regions, achieving a better balance in performance across
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Figure 7. Time and memory consumption for different context
sizes and mini-context sizes £ on an NVIDIA V100 GPU during
inference.

various segmentation tasks.

Excluding the gradient loss resulted in a marked decrease
in generation task performance, underscoring the impor-
tance of capturing edge information in brain images. In-
terestingly, even though the gradient loss was not applied to
segmentation tasks, it improved segmentation performance.
This improvement likely stems from the model’s heightened
sensitivity to boundaries.

. . Segmentation  Generation
Modified L1 Gradient Loss (Dice) (PSNR)

v 0.7977 £ 0.0313 28.19 £ 0.65

v 0.8014 £ 0.0304 26.67 £ 0.69

v v 0.8173 £ 0.0271 28.38 = 0.76

Table 1. Ablation study of loss functions demonstrating the model
performance across all segmentation and generation tasks, with
results averaged over context sizes of 1, 2, 4, and 8.

5. Conclusion

This paper introduces Neuroverse3D, the first 3D In-
Context Learning (ICL) universal model for neuroimaging,
addressing the critical challenge of high memory consump-
tion inherent in ICL. The proposed APSP and U-shaped fu-
sion enable adaptive parallel-sequential context processing,
supporting unlimited context. An optimized loss function



balances performance across diverse tasks and enhances
anatomical focus. Evaluated on cross-center data, Neuro-
verse3D significantly outperforms other ICL models in all
tasks, matching the performance of fully supervised models
in segmentation. Trained on large datasets, Neuroverse3D
demonstrates robust generalization and eliminates retrain-
ing, showing strong practical potential. By overcoming
memory limitations for the ICL model, Neuroverse3D fun-
damentally paves the way for more diverse scenarios of ICL
exploration such as processing other organs in 3D.
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Neuroverse3D: Developing 3D In-Context Learning Universal Model in
Neuroimaging

Supplementary Material

A. Method
A.l. Gradient Equivalence

Here, we prove that the expected value of the gradient using Adaptive Parallel-Sequential Processing (APSP) is the same as
the full-context gradient when no mini-contexts are discarded. The full-context gradient, exemplified by the i-th stage output
Eém ;» With respect to parameters ¢ is defined as:

n
Volhn = Vo) g ®
j=1
where L = Z;'L:1 len(s;) ensures equal weighting of image-label pairs across mini-contexts. For brevity, we focus on the

i-th stage, with the understanding that the analysis applies analogously to other stages.

In APSP, mini-contexts are randomly shuffled, and we select the last mini-context to compute the gradient. Numerically,
this is equivalent to randomly selecting a mini-context with index 7 from {1,2,...,n} with a uniform distribution, denoted
as 7 ~ U{1,...,n}. The APSP gradient using only the 7-th mini-context is:

) len(sy) _;
VQ’CjXPSPJr = v9 é )Cdec,ﬂ" (9)

To ensure the expected APSP gradient matches the full-context gradient, during gradient computation we scale cfiecm by a

factor of n, making Vo Lipsp ccatedn = Vo %né@ec - the scaled gradient for the 7-th mini-context. It is important to note

that the scaling factor of n is exclusively applied during the gradient computation phase and is omitted during the forward
computation, thus having no impact on the forward computation of the model. The expected APSP gradient with scaling is:
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Equation (10) shows that the expected APSP gradient equals the full-context gradient VL% ;. This analysis, exemplified for
the i-th stage, extends to all network stages and parameters.

Thus, by employing the gradient of only the last mini-context and scaling by n, APSP preserves the full-context gradient
expectation while enabling memory-efficient computation.

A.2. U-Shape Fusion Strategy Explanation

In Figure 8, (a) illustrates our proposed U-Shape fusion strategy, while (b) shows a fusion strategy with alternating feature
transmission, similar to those presented in [12] and [14] for comparison in the following analysis. The red semi-transparent
arrows indicate the order of computation for feature maps in the network.



In case (b), there is a problematic trade-off between memory usage and computational cost. For example, when computing
layer 2 of the target branch, it is necessary to calculate the feature maps for all image-label pairs in the context branch at layer
2, which are then passed to the target branch. After this, two options arise:

1. Retaining the context branch layer 2 features for subsequent computations requires storing feature maps for all image-label
pairs across all mini-contexts during sequential processing, which significantly increases memory usage.

2. Discarding the context branch layer 2 features saves memory but requires recomputing them for subsequent layers, which
substantially increases computational cost.

Both options severely hinder efficient sequential processing. In contrast, strategy (a) avoids these issues. For each image-

label pair, all required context representations are obtained in a single pass, allowing computed feature maps to be discarded

during sequential processing, thereby ensuring computational efficiency.

Target Branch
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Figure 8. Illustration of different fusion strategies. (a) The proposed U-Shape fusion strategy. (b) The alternating fusion strategy. The red
semi-transparent arrows indicate the computation order of the feature maps in the network.

B. Data
B.1. Domain Shift Between Training and Test Data

We trained a discriminator to distinguish between images from the training set and those from the held-out set, achieving
accuracy, precision, recall, and F1 scores of 0.934, 0.932, 0.918, and 0.925, respectively. Additionally, we trained a nnUNet
model for brain anatomical segmentation using the training set. These results serve as proxy evidence for the presence of
domain shift.

B.2. Data Sampling

During training, tasks are selected based on a predefined sampling rate, followed by the random selection of a dataset within
the chosen task with equal probability. Given a context size L, we randomly sample L + 1 image-label pairs from the
training set of the selected dataset. One of these samples is alternately designated as the target image and ground truth,
while the remaining L samples serve as the context set for the model. This process generates L + 1 unique target image and
corresponding context set, significantly reducing the time consumption associated with data I/O.

Since the model is designed for binary classification, for multi-class segmentation datasets, we iteratively select each class
as the foreground and the remaining classes as the background during training.

In generation tasks, we simulate various scenarios. For bias field correction, 3D bias fields are generated using Legendre
polynomials with random coefficients. Gaussian noise removal involves simulating noise with a mean of 0 and a standard
deviation randomly selected within the range 0.15 to 0.25. For salt-and-pepper noise removal, noise is applied with random
probabilities equal to 0.04, where salt noise (value of 1) and pepper noise (value of 0) are added separately. For the inpainting
task, binary masks are created using random 3D Perlin noise to occlude specific regions of the input image. The 2D-to-3D



Type for use Dataset Task # Scans # Masks Modality

TopCow[56] Seg., Gen. 90 90 MRA
CAS2023[4] Seg., Gen. 100 100 MRA
DWI, ADC,
ISLES2022[23] Gen., Mod. 750 0 UAIR
ATLASI[37] Seg., Gen. 655 655 Tlw
T1, T2,
IXI[3] Gen,Mod. 2268 0 MRA, BD
ICH Unlabeled[ 16] Gen. 2000 0 CT
S ADHD[ 1] Gen. 950 0 T1
Vrf_‘;““_lg ag ADNI[33] Gen., Mod. 9923 0 Tl
alidation Set CMI[5] Gen. 5146 0 Tl
GSP[25] Gen. 2616 0 T1
HABJ[ 18] Seg., Gen. 460 460 Tl
NIMH[47] Seg., Gen. 248 248 T1
OASIS[44] Gen. 3916 828 T1
UKBiobank[50] Seg., Gen. 4000 2000 T1, T2
FLAIR, TI,
BraTS[46]  Seg,Gen,Mod. 5004 1251 TicE T2
WMH[35] Mod. 120 0 T1, FLAIR
CCNP[41] Gen. 1580 0 T1
Held-out Set
SOl krCoN1000[2] Seg., Gen. 1096 1096 Tl
PPMI[45] Gen. 2752 0 Tl
T1, T2, FLAIR,
Total Seg. Gen., Mod. 43674 6728 MRA, DWI, ADC,
PD, CT

Table 2. Summary of Datasets. Seg., Gen., and Mod. represent segmentation, generation (excluding modality transformation), and
modality transformation tasks, respectively.

task requires the model to reconstruct a complete 3D brain volume from only three central brain slices, with this task restricted
to images in MNI space. In the super-resolution task, images are downsampled by a factor of 2. For skull stripping, input
images include the skull, while ground truth images, with the skull removed, are generated using FreeSurfer [15]. Lastly, the
modality transformation task uses registered pairs of different imaging modalities as input and output.

Figure 9 illustrates the target image, ground truth, and context set (with two image-label pairs shown as examples) for all
tasks. The model takes the target image and context set as input, using the context set to infer the required task.

Task Sampled Rate Weight
Segmentation 2 50
Bias Remove 1 1
Gaussian Noise Remove 1 1
Salt & Pepper Noise Remove 1 1
2D to 3D Generation 1 0.5
Inpainting 1 1
Super-Resolution 1 1
Skull Stripping 1 1
Modality Transform 1 1

Table 3. Sampling rate and weight assigned to each task when training.
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Figure 9. Visualization of the target image, ground truth, and image-label pairs in the context set.



Original Image Augmented Images by GIN

Figure 10. Visualization of the images augmented by GIN [49].

Synthetic Synthetic
Brain Class 1 Class 2 Class 3 Random Image Class 1 Class 2 Class 3

Figure 11. Visualization of the synthetic images [12, 24] for the segmentation task and corresponding segmentation masks.

B.3. Image and Task Augmentation

Image and task augmentation are performed after obtaining data sampling. For image augmentation, we applied the fol-
lowing transformations: random affine transformations (p=0.05), elastic deformations (p=0.05), flips (p=0.05), and rotations
(p=0.05). To extend the diversity of input images, we introduced random intensity shifts (p=0.2), intensity scaling (p=0.2),
Gaussian noise (p=0.1), intensity inversion (p=0.05), and contrast enhancement using a random convolutional network called
GIN [49] (p=0.05). Figure 10 showcases examples of applying GIN to process images, resulting in the generation of random
and diverse modalities.

For task augmentation, we employed several methods as follows:



* Random Task Overlapping: To enhance the model’s ability to perform multiple tasks in a single run, we randomly
overlay tasks during training: bias field correction, Gaussian noise removal, salt and pepper noise removal, inpainting, and
super-resolution, each with a probability of 0.05. These overlays are independent.

* Random Modalities (p=0.05): In modality transformation tasks, we also applied GIN [49] to the target and ground truth
images. The same parameters were used for both context and target images.

* Random Foreground (p=0.5): In multi-class segmentation datasets, multiple classes were randomly grouped into a single
foreground class, with remaining classes assigned as background. This approach increases the variety of segmentation
tasks. Specifically, we randomly sampled & classes in the dataset (capped at 10) to form the foreground.

* Sobel Filter (p=0.05): In segmentation tasks, the Sobel filter was applied to the labels, with the model tasked to predict the
filtered output.

* Mask Inversion (p=0.05): In segmentation tasks, the foreground and background masks were swapped to introduce vari-
ability.

* Random Dilation (p=0.05): The segmentation masks of the target and context are dilated by 1 voxel.

* Random Erosion (p=0.05): The segmentation masks of the target and context are eroded by 1 voxel.

Each image and task augmentation was applied independently according to its probability, and these augmentations are
mutually compatible.

Synthetic Data. To enhance generalization, we incorporated synthetic data, following [12, 24], as shown in Figure 1 1. This
added 100 segmentation datasets with varying contrasts, each containing 100 3D image samples.

C. Experiments

C.1. Training

Neuroverse3D was trained on eight NVIDIA V100 GPUs, with a batch size of 1 per GPU, using the ADAM optimizer.
Training ran for 120K steps with an initial learning rate of 10~*. Validation loss was evaluated every 1.2K steps, and the
learning rate was halved if no improvement was observed over 20 evaluations. To improve training efficiency, the context
size and mini-context size were fixed at 3 for the first 100K steps, requiring the model to process only one mini-context.
Then, the context size was uniformly selected between 1 and 8 for the final 20K steps. Total training took approximately 8
days, with the model achieving the lowest validation loss selected. All task-specific models were trained on a single GPU for
36K steps, due to the much smaller training set and faster convergence compared to the multi-task ICL model.

C.2. Evaluation

Performance was assessed using the Dice coefficient for segmentation tasks and the Peak Signal-to-Noise Ratio (PSNR) for
generation tasks on held-out datasets. Each task and setting were evaluated 10 times with randomly selected context sets to
compute the average and standard deviation, ensuring robust performance measurements.

C.3. Qualitative Results

Figure 12 present the comparisons between our model and other ICL models. In segmentation tasks, other ICL models
often produce false positive results on background slices, while our Neuroverse3D effectively captures global information,
eliminating this issue. For generation tasks, Neuroverse3D demonstrates improved slice-to-slice consistency compared to 2D
ICL models, underscoring the critical importance of leveraging a 3D model.

Moreover, Painter, an ICL model trained on natural images, struggles to handle these specialized medical imaging tasks
despite being exposed to extensive data and having a large number of parameters. This highlights that for ICL models,
merely providing context might be insufficient for adaptation to the medical domain without incorporating domain-specific
knowledge.

Figure 13 presents the comparison results between our model and task-specific models. Overall, in 3D scenarios, with
a limited number of samples and well designed data augmentation, few-shot task-specific models can achieve impressive
results, which aligns with findings from previous studies [6]. For 3D segmentation tasks, the performance of Neuroverse3D
is on par with both few-shot and fully supervised models.
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Figure 12. Qualitative results comparing of ICL models. In the SegGPT or Painter column, the results for segmentation tasks are from
SegGPT, and the results for generation tasks are from Painter.
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Fully supervised



Smodified L1 Gradient Loss Cerebral Hippocampus Thalamus \}é?nttiliglle Putamen Amygdala Average

Cortex
v 0.8847 0.7618 0.8586 0.8150 0.8220 0.6439 0.7977
v 0.8724  0.7791 0.8648 0.8307 0.8167 0.6446 0.8014
v v 0.8898  0.7917 0.8726 0.8290 0.8398 0.6812 0.8173

Table 4. Detailed ablation study of segmentation tasks.

. : Bias Field Gaussi Salt-and-P L S Skull Modalit
Smodified L1 Gradient Loss C(l)?'f'ecltfibon Nois:lll{s::zgval lsoisanenfgy;r 2D-to-3D Inpainting Res:)lll:l‘atlion Stripl}l)ing Trans?o?n‘llaytion Average
v 27.63 25.57 35.85 25.50 3149 2771 27.99 23.79 28.19
v 24.16 24.93 30.82 25.55  29.19 27.48 2744 23.81 26.67
v v 27.68 25.89 35.72 26.08 31.21 28.08  28.61 23.74 28.38

Table 5. Detailed ablation study of generation tasks.

C.4. Inference Cost and Model Size

Table 6 summarizes the FLOPs and parameter counts for the models during inference. The task-specific model is imple-
mented as a 5-stage U-Net with channel sizes of (32, 64, 128, 256, 512). Similarly, both the target and context branches of
Neuroverse3D utilize a 5-stage U-Net with the same channel configuration.

Model Parameters (M) Inference TFLOPs
Task-specific 35.02 1.71
Neuroverse3D (L = 1) 70.85 4.35
Neuroverse3D (L = 8) 70.85 16.8

Table 6. Model parameters and inference FLOPs.

Inference Time (s) Context (pair) Parameters (M)

Neuroverse3D 1.01 83D 70.85

Neuralizer [14] 4.96 322D 1.27

UniverSeg [12] 8.36 64 2D 1.18
Painter [51] 31.35 12D 307.72
SegGPT [52] 184.89 82D 307.72

Table 7. Inference time for a single 3D image (128 2D slices) and the corresponding model settings on a V100 GPU. For other comparison
methods, we adopt the optimal context settings reported in their respective papers, consistent with the settings in Fig. 4.

C.5. Different Fusion Stage Configurations

Fusion Stage(s) 5 5-4 5-3 5-2 5—1 (Ours)
Segmentation (Dice) 0.8019 0.8118 0.8274 0.8347 0.8446
PET Segmentation (Dice) 0.2870 0.3162 0.3714 0.4945 0.5314
Generation (PSNR) 25.82 2636 2741 27.94 28.87

Table 8. Performance under different fusion stage configurations. Stage 5 corresponds to the deepest stage.

Tab. 8 summarizes the results of the ablation study on fusion stages. Denser connections improved the model’s perfor-
mance, especially on PET segmentation—an unseen modality.



Context Modality Bias Removal Gaussian Salt & Pepper Inpainting Super-res. 2D to 3D

T1 28.32 26.31 35.98 31.52 28.29 26.63
T2 24.93 18.88 34.86 29.18 25.34 14.15
CT 24.95 23.32 33.97 28.67 24.62 12.27

Table 9. Generation performance (PSNR) under different context modalities, with T1 as the target modality.

C.6. Impact of Different Context Modalities

Tab. 9 presents the impact of different context modalities. For all tasks, performance is optimal when the context modality
matches the target modality. The performance drop in salt-and-pepper noise removal is relatively small, potentially because
this task is less dependent on contextual information. In contrast, Gaussian noise removal and 2D-to-3D transformation show
more pronounced performance degradation, likely due to their greater reliance on context to convey task-relevant knowledge.
These findings underscore the importance of modality alignment for the effective performance of ICL models.
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